研究生: |
蘇杰特 Sudheendran Swayamprabha, Sujith |
---|---|
論文名稱: |
以新型電洞傳輸與主體材料製作濕式OLED之研究 Fabrication Study of Solution Processed Organic Light Emitting Diodes by Utilizing Novel Hole Transporting and Host Materials |
指導教授: |
周卓煇
Jou, Jwo-Huei |
口試委員: |
薛景中
Shyue, Jing-Jong 魏茂國 Wei, Mao-Kuo 蔡永誠 Tsai, York 岑尚仁 Chen, Sun-Zen |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 180 |
中文關鍵詞: | 製造 、OLED 、空穴傳輸材料 、主機材料 、熱活化延遲熒光 |
外文關鍵詞: | Fabrication, OLED, Hole transporting material, Host Material, Thermally activated delayed fluorescence |
相關次數: | 點閱:56 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在1987年C.W. Tang與Van Slyke以雙層結構製出第一個有機發光二極體(OLED)後,透過材料化學、元件設計與製程改善等跨領域研究,OLED在可製造性、元件性能和耐用性上一直持續地進步著。現今,OLED已因材料製備容易、成本低、驅動電壓小、重量輕、以及反應速率快等優點,被視為是下一代照明和平板顯示主流技術之一。
一般而言,OLED可藉由真空蒸鍍或是濕式塗布的方式來製作。第一種方法係直接在元件製作過程中,疊加所設計的載子傳輸層、載子注入層、載子調製層、以及電荷阻擋層,藉此達到控制激子分佈在設計的結合區內,進而提高元件的效率;然而,蒸鍍法卻有難以實現大尺寸化、高材料消耗和投資成本高的缺點。而後者,由於具有簡單的元件結構、低成本、可應用於可撓式基板、以及可透過連續滾印製造大面積元件等優點,因而使得發展濕式製程成為製作OLED的一個方向。
為改善濕式OLED的元件性能,一些具特殊功能的中間層被添加至OLED中,在這些添加層中,可濕式製備的主體和電洞傳輸材料(HTM)對於平衡發光層內的載子是極為重要的。雖然已有許多高三重態能階的電子傳輸材料被開發出來,但有關探討新的HTM的論文卻不多。類似地情況也發在TADF系統的OLED中,目前雖然已有許多發光材料的應用被報導,但有關主體材料的設計和開發卻被忽略;一個高效率可濕式製作的主體材料,可以降低TADF OLED元件的結構複雜性以及製作成本。因此,本論文的主要目的是探討可濕式製作的新穎HTM與主體材料的光物理、電化學、熱、電荷傳輸、成膜形態、和電致發光等特性。
在論文的第一部分,我們研究了以一系列新穎芴基電洞傳輸材料(化合物3、4和5)所製作的黃色磷光OLED。當使用化合物4取代常用的電洞傳輸材料NPB時,元件的電流效率從23.3 cd/A增加到35.8 cd/A,效能增加了54%。同時,為了研究溶劑對元件性能的影響,我們也比較了以THF與鄰二甲苯做為電洞傳輸層溶劑的元件特性。
在第二部分,我們使用了一系列可濕式製作之咔唑基主體材料(ME4、ME5、ME9、ME10和ME13)與TADF綠色染料2,4,5,6-Tetra(9H-carbazol-9-yl)isophthalonitril(4CzIPN)製備綠光OLED。在五種材料中,使用主體ME9的OLED元件有最好的表現;所得元件最大能量效率及最大電流效率分別為40.0 lm/W及44.7 cd/A、最大外部量子效率為14.1%,而最大亮度為16,220 cd/m2;此元件特性佳的原因為:ME9具有的低∆EST、高的PLQY、高熱穩定性與獨特的多孔性薄膜形態,因此可以促進電洞的傳輸而提高元件的特性。
After the demonstration of first organic light-emitting diode (OLED) via using a double-layer structure of organic materials by C. W. Tang and Van Slyke in 1987, OLEDs are relentlessly developing in terms of manufacturability, performance, and durability for joint research efforts in material chemistry, device engineering, and manufacturing. Nowadays, OLEDs are regarded as one of the most dominant next-generation lighting and flat-panel display technology for owing facile preparation, low cost, low driving voltage, light weight, and fast response.
Usually, OLEDs are fabricated either through a thermal evaporation process under a high vacuum or through a solution process. Typically, the first approach delivers straightforward access to stack the designing layers, such as carrier transporting layers, carrier injection layers, carrier modulating layers, and charge blocking layers, etc. These layers are highly essential for controlling the radiative excitons in the desired recombination zone. However, it suffers from low scalability, high material consumption and high capital cost. The latter one seems to be more superior for owing simple device configurations, low-cost, enabling the use of flexible substrates, and the processability of fabricating large-area devices via a roll-to-roll process.
Several functional and internal layers have been used to improve the performance of solution-processed OLED devices. Amongst, the developments of solution-processable host and hole-transporting materials (HTMs) are highly crucial to balance the charge carriers in the emissive layer. Although many high triplet energy electron-transporting materials are designed and explored, only fewer numbers of potential HTMs are reported. Similarly, in the case of thermally activated delayed fluorescence (TADF) OLEDs, a large number of emitter materials have already reported, but the design and development of potential host materials are overlooked. Efficient solution processable host materials for TADF OLEDs can reduce the complexity in the device architecture and production cost. The foremost objective of this thesis is to study the photophysical, electrochemical, thermal, charge transport, morphological properties, and electroluminescent characteristics of solution-processable novel HTMs and host materials.
In the first part, we investigated a series of novel fluorene-based HTMs (Compound 3, 4, and 5), which were designed, characterized, and utilized for fabricating yellow phosphorescent OLEDs. The current efficiency of the best optimized conventional iridium(III) bis(4phenylthieno[3,2-c]pyridinato-N,C-2’) acetylacetonate based phosphorescent yellow OLED device increased from 23.3 to 35.8 cd/A, an increment of 54% by substituting the conventional HTM, N,N′-di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB) with compound 4. The effect of solvent was also studied by dissolving the HTMs in either THF or o-xylene.
In the second part, we utilized a series of carbazole based solution-processable host materials (ME4, ME5, ME9, ME10, and ME13) to fabricate the 2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN) based green TADF OLEDs. Among them, the ME9 composing device showed the best performance. The resultant device exhibits a maximum power efficiency of 40.0 lm/W, current efficiency of 44.7 cd/A, and external quantum efficiency of 14.1% with a maximum luminance of 16,220 cd/m2. The excellent performance may attribute to the low singlet-triplet energy gap (∆EST), high photoluminescence quantum yield (PLQY), high thermal stability, and unique porous morphology of the ME9.
[1] https://www.digitaltrends.com/home-theater/oled-vs-led/
[2] R. Reyes, M. Cremona, E. E. S. Teotonio, H. F. Brito, O. L. Malta, Chem. Phys. Lett. 2004, 396, 54.
[3] J. H. Jou, P. W. Chen, Y. L. Chen, Y. C. Jou, J. R. Tseng, R. Z. Wu, C. Y. Hsieh, Y. C. Hsieh, P. Joers, S. H. Chen, Y. S. Wang, F. C. Tung, C. C. Chen, C. C. Wang, Org. Electron. 2013, 14, 47.
[4] C. W. Joo, J. Moon, J. H. Han, J. W. Huh, J. Lee, N. S. Cho, J. Hwang, H. Y. Chu, J. I. Lee, Org. Electron. 2014, 15, 189.
[5] J. H. Jou, M. H. Wu, S. M. Shen, H. C. Wang, S. Z. Chen, S. H. Chen, C. R. Lin, Y. L. Hsieh, Appl. Phys. Lett. 2009, 95, 10.
[6] J. H. Jou, H. C. Wang, S. M. Shen, S. H. Peng, M. H. Wu, S. H. Chen, P. H. Wu, J. Mater. Chem. 2012, 22, 8117.
[7] S. M. Lee, J. H. Kwon, S. Kwon, K. C. Choi, IEEE Trans. Electron Devices 2017, 64, 1922.
[8] J. H. Jou, Y. C. Chou, S. M. Shen, M. H. Wu, P. S. Wu, C. R. Lin, R. Z. Wu, S. H. Chen, M. K. Wei, C. W. Wang, J. Mater. Chem. 2011, 21, 18523.
[9] J. H. Jou, Y. T. Su, S. H. Liu, Z. K. He, S. Sahoo, H. H. Yu, S. Z. Chen, C. W. Wang, J. R. Lee, J. Mater. Chem. C 2016, 4, 6070.
[10] T. Sonoyama, M. Ito, S. Seki, S. Miyashita, S. Xia, J. Brooks, K.-O. Cheon, R. C. Kwong, M. Inbasekaran, J. J. Brown, J. Soc. Inf. Disp. 2008, 16, 1229.
[11] G. Vamvounis, H. Aziz, N. X. Hu, Z. D. Popovic, Synth. Met. 2004, 143, 69.
[12] J. H. Jou, S. M. Shen, C. R. Lin, Y. S. Wang, Y. C. Chou, S. Z. Chen, Y. C. Jou, Org. Electron. 2011, 12, 865.
[13] J.-H. Jou, C.-Y. Hsieh, P.-W. Chen, S. Kumar, J. H. Hong, J. Photonics Energy 2014, 4, 043598.
[14] https://www.marketwatch.com/press-release/oled-display-market-2020-top-countries-data-growth-factors-defination-business-opportunity-trend-segmentation-and-forecast-to-2026-2020-03-24
[15] Y. Zhu, L. Guo, Y. Lee, X. Xu, J. Xie, G. Zhang, Y. Hu, in SID Symp. Dig. Tech. Pap., 2019, pp. 628–631.
[16] D. Q. Chowdhury, S. M. Garner, S. C. Lewis, in 2019 26th Int. Work. Act. Flatpanel Displays Devices, 2019, pp. 1–3.
[17] Y.-S. Tyan, J. Photonics Energy 2011, 1, 1.
[18] https://www.marketwatch.com/press-release/oled-lighting-panels-market-analysis-2020-2026-covering-recent-trend-and-future-growth-feasibility-regional-outlook-and-future-forecast-2020-01-24
[19] https://www.oled-info.com/korean-government-help-boost-oled-exports-tax-benefits
[20] D. Free, S. Now, M. Snapshot, 2020, 2019.
[21] https://www.statsandreports.com/report/357288-global-united-states-european-union-and-china-oled-panel-market-research-report-2019-2025
[22] Bernanose, André, Vouaux, Paul, J. Chim. Phys. 1953, 50, 261.
[23] Bernanose, André, Comte, Marcel, Vouaux, Paul, J. Chim. Phys. 1953, 50, 64.
[24] Bernanose, André, J. Chim. Phys. 1955, 52, 396.
[25] H. Kallmann, M. Pope, J. Chem. Phys. 1960, 32, 300.
[26] H. KALLMANN, M. POPE, Nature 1960, 186, 31.
[27] P. Mark, W. Helfrich, J. Appl. Phys. 1962, 33, 205.
[28] M. Pope, H. P. Kallmann, P. Magnante, J. Chem. Phys. 1963, 38, 2042.
[29] M. Sano, M. Pope, H. Kallmann, J. Chem. Phys. 1965, 43, 2920.
[30] W. Helfrich, W. G. Schneider, Phys. Rev. Lett. 1965, 14, 229.
[31] M. L. Heilig, ACM SIGGRAPH Comput. Graph. 1994, 28, 131.
[32] US Patent, US3995299A , 1976.
[33] R. H. Partridge, Polymer (Guildf). 1983, 24, 755.
[34] R. H. Partridge, Polymer (Guildf). 1983, 24, 748.
[35] R. H. Partridge, Polymer (Guildf). 1983, 24, 739.
[36] R. H. Partridge, Polymer (Guildf). 1983, 24, 733.
[37] P. S. Vincett, W. A. Barlow, R. A. Hann, G. G. Roberts, Thin Solid Films 1982, 94, 171.
[38] C. W. Tang, S. A. Vanslyke, Appl. Phys. Lett. 1987, 51, 913.
[39] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature 1990, 347, 539.
[40] https://www.lg.com/us/oled-tvs
[41] https://support.apple.com/en-us/HT208191
[42] J. Yuan, W. Liu, J. Yao, Q. Sun, Y. Dai, J. Chen, D. Yang, X. Qiao, D. Ma, Org. Electron. 2020, 83, 105745.
[43] J. Xiao, X. X. Wang, H. Zhu, X. Gao, Z. H. Yang, X. H. Zhang, S. D. Wang, Appl. Phys. Lett. 2012, 101, 13301.
[44] Y. Chen, Q. Wang, J. Chen, D. Ma, D. Yan, L. Wang, Org. Electron. 2012, 13, 1121.
[45] J.-J. Kim, M.-K. Han, Y.-Y. Noh, Semicond. Sci. Technol. 2011, 26, 30301.
[46] J.-A. Jeong, H.-S. Shin, K.-H. Choi, H.-K. Kim, J. Phys. D. Appl. Phys. 2010, 43, 465403.
[47] J.-H. Jou, S.-M. Shen, M.-H. Wu, S.-H. Peng, H.-C. Wang, J. Photonics Energy 2011, 1, 1.
[48] J.-H. Jou, M.-H. Wu, S.-M. Shen, H.-C. Wang, S.-Z. Chen, S.-H. Chen, C.-R. Lin, Y.-L. Hsieh, Appl. Phys. Lett. 2009, 95, 13307.
[49] D. K. Dubey, G. Krucaite, S. S. Swayamprabha, R. A. K. Yadav, D. Blazevicius, J. Tagare, S. Chavhan, T.-C. Hsueh, S. Vaidyanathan, S. Grigalevicius, J.-H. Jou, Org. Electron. 2020, 79, 105633.
[50] C.-H. Chien, F.-M. Hsu, C.-F. Shu, Y. Chi, Org. Electron. 2009, 10, 871.
[51] W. S. Jeon, T. J. Park, S. Y. Kim, R. Pode, J. Jang, J. H. Kwon, Org. Electron. 2009, 10, 240.
[52] Z. Jiang, Y. Chen, C. Fan, C. Yang, Q. Wang, Y. Tao, Z. Zhang, J. Qin, D. Ma, Chem. Commun. 2009, 3398.
[53] W.-Y. Hung, L.-C. Chi, W.-J. Chen, Y.-M. Chen, S.-H. Chou, K.-T. Wong, J. Mater. Chem. 2010, 20, 10113.
[54] S.-J. Su, H. Sasabe, T. Takeda, J. Kido, Chem. Mater. 2008, 20, 1691.
[55] J. Cui, A. Wang, N. L. Edleman, J. Ni, P. Lee, N. R. Armstrong, T. J. Marks, Adv. Mater. 2001, 13, 1476.
[56] Y.-M. Chien, F. Lefevre, I. Shih, R. Izquierdo, Nanotechnology 2010, 21, 134020.
[57] Y.-H. Duan, Y. Duan, X. Wang, D. Yang, Y.-Q. Yang, P. Chen, F.-B. Sun, K.-W. Xue, Y. Zhao, Appl. Surf. Sci. 2015, 351, 445.
[58] W. H. Kim, A. J. Mäkinen, N. Nikolov, R. Shashidhar, H. Kim, Z. H. Kafafi, Appl. Phys. Lett. 2002, 80, 3844.
[59] T. Sun, Z. L. Wang, Z. J. Shi, G. Z. Ran, W. J. Xu, Z. Y. Wang, Y. Z. Li, L. Dai, G. G. Qin, Appl. Phys. Lett. 2010, 96, 133301.
[60] T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B. H. Hong, J.-H. Ahn, T.-W. Lee, Nat. Photonics 2012, 6, 105.
[61] M. Ichikawa, J. Amagai, Y. Horiba, T. Koyama, Y. Taniguchi, J. Appl. Phys. 2003, 94, 7796.
[62] Z. Z. You, G. J. Hua, S. F. Lou, Int. J. Electron. 2011, 98, 129.
[63] https://www.kanekaoled.jp/en/oled/mechanism.html
[64] S. S. Skourtis, C. Liu, P. Antoniou, A. M. Virshup, D. N. Beratan, Proc. Natl. Acad. Sci. 2016, 113, 8115.
[65] S. Jang, M. D. Newton, R. J. Silbey, Phys. Rev. Lett. 2004, 92, 218301.
[66] https://en.wikipedia.org/wiki/CIE_1931_color_space
[67] J.-H. Jou, K.-Y. Chou, F.-C. Yang, A. Agrawal, S.-Z. Chen, J.-R. Tseng, C.-C. Lin, P.-W. Chen, K.-T. Wong, Y. Chi, Appl. Phys. Lett. 2014, 104, 203304.
[68] https://en.wikipedia.org/wiki/Color_temperature
[69] C. Féry, B. Racine, D. Vaufrey, H. Doyeux, S. Cinà, Appl. Phys. Lett. 2005, 87, 213502.
[70] https://www.oled-info.com/udc-updates-and-booth-visit-sid-201
[71] https://en.wikipedia.org/wiki/Fluorescence
[72] https://en.wikipedia.org/wiki/Thermally_activated_delayed_fluorescence
[73] A. H. Persad, C. A. Ward, Chem. Rev. 2016, 116, 7727.
[74] J. H. Jou, S. Kumar, M. Singh, Y. H. Chen, C. C. Chen, M. T. Lee, Molecules 2015, 20, 13005.
[75] L. Duan, L. Hou, T. W. Lee, J. Qiao, D. Zhang, G. Dong, L. Wang, Y. Qiu, J. Mater. Chem. 2010, 20, 6392.
[76] S. Thokala, S. P. Singh, ACS omega 2020, 5, 5608.
[77] D. K. Dubey, G. Krucaite, S. S. Swayamprabha, R. A. K. Yadav, D. Blazevicius, J. Tagare, S. Chavhan, T. C. Hsueh, S. Vaidyanathan, S. Grigalevicius, J. H. Jou, Org. Electron. 2020, 79, 105633.
[78] M. Shibata, Y. Sakai, D. Yokoyama, J. Mater. Chem. C 2015, 3, 11178.
[79] S. H. Kim, J. Jang, J. Y. Lee, Appl. Phys. Lett. 2007, 90, 223505.
[80] M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, Y. Taga, Appl. Phys. Lett. 2001, 79, 156.
[81] S. O. Jeon, K. S. Yook, C. W. Joo, J. Y. Lee, K. Y. Ko, J. Y. Park, Y. G. Baek, Appl. Phys. Lett. 2008, 93, 256.
[82] Q. Huang, G. A. Evmenenko, P. Dutta, P. Lee, N. R. Armstrong, T. J. Marks, J. Am. Chem. Soc. 2005, 127, 10227.
[83] B. E. Koene, D. E. Loy, M. E. Thompson, Chem. Mater. 1998, 10, 2235.
[84] C. Adachi, K. Nagai, N. Tamoto, Appl. Phys. Lett. 1995, 66, 2679.
[85] Z. Ning, H. Tian, Chem. Commun. 2009, 37, 5483.
[86] P. M. Borsenberger, E. H. Magin, J. J. Fitzgerald, J. Phys. Chem. 1993, 97, 8250.
[87] Q. Zhang, J. Chen, Y. Cheng, L. Wang, D. Ma, X. Jing, F. Wang, J. Mater. Chem. 2004, 14, 895.
[88] L. H. Chan, R. H. Lee, C. F. Hsieh, H. C. Yeh, C. T. Chen, J. Am. Chem. Soc. 2002, 45, 4941.
[89] S. Shahnawaz, S. Sudheendran Swayamprabha, M. R. Nagar, R. A. K. Yadav, S. Gull, D. K. Dubey, J. H. Jou, J. Mater. Chem. C 2019, 7, 7144.
[90] Z. Yang, B. Xu, J. He, L. Xue, Q. Guo, H. Xia, W. Tian, Org. Electron. 2009, DOI 10.1016/j.orgel.2009.04.024.
[91] Z. Yang, B. Xu, J. He, L. Xue, Q. Guo, H. Xia, W. Tian, Org. Electron. 2009, 10, 954.
[92] Q. X. Tong, S. L. Lai, M. Y. Chan, K. H. Lai, J. X. Tang, H. L. Kwong, C. S. Lee, S. T. Lee, Chem. Mater. 2007, 19, 5851.
[93] W. Y. Hung, L. C. Chi, W. J. Chen, Y. M. Chen, S. H. Chou, K. T. Wong, J. Mater. Chem. 2010, 20, 10113.
[94] M. Singh, J. H. Jou, S. Sahoo, S. Sujith, Z. K. He, G. Krucaite, S. Grigalevicius, C. W. Wang, Sci. Rep. 2018, 8, 7133.
[95] F. R. P. Limberg, A. Miasojedovas, P. Pingel, F. Reisbeck, S. Janietz, A. P. Monkman, H. Krüger, RSC Adv. 2015, 5, 83122.
[96] J. H. Jou, Y. T. Su, S. H. Liu, Z. K. He, S. Sahoo, H. H. Yu, S. Z. Chen, C. W. Wang, J. R. Lee, J. Mater. Chem. C 2016, 4, 6070.
[97] J. H. Jou, T. H. Li, S. Kumar, C. C. An, A. Agrawal, S. Z. Chen, P. H. Fang, G. Krucaite, S. Grigalevicius, J. Grazulevicius, C. F. Sung, Org. Electron. 2015, 24, 254.
[98] Y. Zou, T. Ye, D. Ma, J. Qin, C. Yang, J. Mater. Chem. 2012, 22, 23485.
[99] S. Kumar, C. C. An, S. Sahoo, R. Griniene, D. Volyniuk, J. V. Grazulevicius, S. Grigalevicius, J. H. Jou, J. Mater. Chem. C 2017, 38, 9854.
[100] T. Stable, M. Organic, E. Devices, U. Novel, H. Materials, 1994, 121, 677.
[101] J. Li, D. Liu, Y. Li, C. S. Lee, H. L. Kwong, S. Lee, Chem. Mater. 2005, 17, 1208.
[102] P. Moonsin, N. Prachumrak, R. Rattanawan, T. Keawin, S. Jungsuttiwong, T. Sudyoadsuk, V. Promarak, Chem. Commun. 2012, 48, 3382.
[103] H. P. Zhao, X. T. Tao, P. Wang, Y. Ren, J. X. Yang, Y. X. Yan, C. X. Yuan, H. J. Liu, D. C. Zou, M. H. Jiang, Org. Electron. 2007, 8, 673.
[104] A. M. Thaengthong, S. Saengsuwan, S. Jungsuttiwong, T. Keawin, T. Sudyoadsuk, V. Promarak, Tetrahedron Lett. 2011, 52, 4749.
[105] Q. Huang, K. Walzer, M. Pfeiffer, K. Leo, M. Hofmann, T. Stübinger, J. Appl. Phys. 2006, 100, 064507.
[106] X. Zhao, Y. Wu, N. Shi, X. Li, Y. Zhao, M. Sun, D. Ding, H. Xu, L. Xie, Chinese J. Chem. 2015, 33, 955.
[107] C. H. Chen, W. J. Shen, K. Jakka, C. F. Shu, Synth. Met. 2004, 143, 215.
[108] R. Braveenth, I. J. Bae, J. H. Han, W. Qiong, G. Seon, K. Raagulan, K. Yang, Y. H. Park, M. Kim, K. Y. Chai, Molecules 2018, 23, 713.
[109] D. K. Dubey, S. S. Swayamprabha, R. A. Kumar Yadav, D. Tavgeniene, D. Volyniuk, S. Grigalevicius, J. H. Jou, Org. Electron. 2019, 73, 94.
[110] S. Lee, M. H. Seo, Chem. - A Eur. J. 2018, 24, 17419.
[111] A. Babaei, K. Rakstys, S. Guelen, V. Fallah Hamidabadi, M. G. La-Placa, L. Martínez-Sarti, M. Sessolo, H. A. Joel, O. P. M. Gaudin, V. Schanen, M. K. Nazeeruddin, H. J. Bolink, RSC Adv. 2018, 8, 35719.
[112] J. Y. Park, J. Jang, J. Lee, D. Hwang, 2020, 20, 4661.
[113] S. S. Swayamprabha, M. R. Nagar, R. A. K. Yadav, S. Gull, D. K. Dubey, J.-H. Jou, others, J. Mater. Chem. C 2019, 7, 7144.
[114] L. Li, B. Jiao, S. Li, L. Ma, Y. Yu, Z. Wu, Opt. Mater. (Amst). 2016, 53, 19.
[115] P. Wu, W. Song, Z. Xia, Y. Chen, G. Tian, J. Huang, J. Su, Dye. Pigment. 2019, 162, 153.
[116] F. Babudri, G. M. Farinola, F. Naso, R. Ragni, Chem. Commun. 2007, 1003.
[117] Y.-M. Chen, W.-Y. Hung, H.-W. You, A. Chaskar, H.-C. Ting, H.-F. Chen, K.-T. Wong, Y.-H. Liu, J. Mater. Chem. 2011, 21, 14971.
[118] A. Lorente, P. Pingel, G. Liaptsis, H. Krüger, S. Janietz, Org. Electron. 2017, 41, 91.
[119] K. S. Yook, J. Y. Lee, Adv. Mater. 2014, 26, 4218.
[120] T. Chatterjee, K.-T. Wong, Adv. Opt. Mater. 2019, 7, 1800565.
[121] Y. Suzuki, Q. Zhang, C. Adachi, J. Mater. Chem. C 2015, 3, 1700.
[122] J. Li, S.-C. Dong, A. Opitz, L.-S. Liao, N. Koch, J. Mater. Chem. C 2017, 5, 6989.
[123] M. Cai, X. Song, D. Zhang, J. Qiao, L. Duan, J. Mater. Chem. C 2017, 5, 3372.
[124] S. Choi, M. Godumala, J. H. Lee, G. H. Kim, J. S. Moon, J. Y. Kim, D. W. Yoon, J. H. Yang, J. Kim, M. J. Cho, J. H. Kwon, D. H. Choi, J. Mater. Chem. C 2017, 5, 6570.
[125] S. W. Li, C. H. Yu, C. L. Ko, T. Chatterjee, W. Y. Hung, K. T. Wong, ACS Appl. Mater. Interfaces 2018, 10, 12930.
[126] S. G. Ihn, N. Lee, S. O. Jeon, M. Sim, H. Kang, Y. Jung, D. H. Huh, Y. M. Son, S. Y. Lee, M. Numata, H. Miyazaki, R. Gómez-Bombarelli, J. Aguilera-Iparraguirre, T. Hirzel, A. Aspuru-Guzik, S. Kim, S. Lee, Adv. Sci. 2017, 4, 1600502.
[127] M. Kim, S. K. Jeon, S. H. Hwang, J. Y. Lee, Synth. Met. 2015, 209, 19.
[128] W. Li, J. Li, D. Liu, F. Wang, S. Zhang, J. Mater. Chem. C 2015, 3, 12529.
[129] Y. J. Cho, K. S. Yook, J. Y. Lee, Adv. Mater. 2014, 26, 4050.
[130] B. S. Kim, J. Y. Lee, ACS Appl. Mater. Interfaces 2014, 6, 8396.
[131] G. Xie, D. Chen, X. Li, X. Cai, Y. Li, D. Chen, K. Liu, Q. Zhang, Y. Cao, S. J. Su, ACS Appl. Mater. Interfaces 2016, 8, 27920.
[132] D. Ding, Z. Zhang, Y. Wei, P. Yan, H. Xu, J. Mater. Chem. C 2015, 3, 11385.
[133] D. H. Ahn, J. S. Moon, S. W. Kim, S. Y. Lee, D. Karthik, J. Y. Lee, J. H. Kwon, Org. Electron. 2018, 59, 39.
[134] X. Xu, S. Chen, G. Yu, C. Di, H. You, D. Ma, Y. Liu, Adv. Mater. 2007, 19, 1281.
[135] R. Komatsu, H. Sasabe, S. Inomata, Y. J. Pu, J. Kido, Synth. Met. 2015, 202, 165.
[136] C. Wang, Y. Q. Zheng, J. Tang, J. Le Yu, F. Yang, B. Wei, X. F. Li, J. H. Zhang, Nanotechnology 2019, 30, 115201.
[137] C. W. Lee, J. Y. Lee, ACS Appl. Mater. Interfaces 2015, 7, 2899.
[138] T. Nishimoto, T. Yasuda, S. Y. Lee, R. Kondo, C. Adachi, Mater. Horizons 2014, 1, 264.
[139] Y. Zhao, C. Wu, P. Qiu, X. Li, Q. Wang, J. Chen, D. Ma, ACS Appl. Mater. Interfaces 2016, 8, 2635.
[140] M. P. Gaj, C. Fuentes-Hernandez, Y. Zhang, S. R. Marder, B. Kippelen, Org. Electron. 2015, 16, 109.
[141] Y. Im, J. Y. Lee, Chem. Mater. 2014, 26, 1413.
[142] J. W. Sun, J.-H. Lee, C.-K. Moon, K.-H. Kim, H. Shin, J.-J. Kim, Adv. Mater. 2014, 26, 5684.
[143] B. S. Kim, J. Y. Lee, Adv. Funct. Mater. 2014, 24, 3970.
[144] I. S. Park, H. Seo, H. Tachibana, J. U. Kim, J. Zhang, S. M. Son, T. Yasuda, ACS Appl. Mater. Interfaces 2017, 9, 2693.
[145] A. Benor, S. ya Takizawa, C. Pérez-Bolívar, P. Anzenbacher, Org. Electron. 2010, 11, 938.
[146] D. Lu, Y. Wu, J. Guo, G. Lu, Y. Wang, J. Shen, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2003, 97, 141.
[147] C. N. Li, C. Y. Kwong, A. B. Djurišić, P. T. Lai, P. C. Chui, W. K. Chan, S. Y. Liu, Thin Solid Films 2005, 477, 57.
[148] G. C. Vougioukalakis, I. Stamatopoulos, N. Petzetakis, C. P. Raptopoulou, V. Psycharis, A. Terzis, P. Kyritsis, M. Pitsikalis, N. Hadjichristidis, Polymer (Guildf). 2009, 1.
[149] T. H. E. Carbazole, 1924, 202.
[150] D. Deng, Y. Zhang, J. Zhang, Z. Wang, L. Zhu, J. Fang, B. Xia, Z. Wang, K. Lu, W. Ma, others, Nat. Commun. 2016, 7, 1.
[151] C. Murawski, C. Fuchs, S. Hofmann, K. Leo, M. C. Gather, Appl. Phys. Lett. 2014, 105, 113303.
[152] https://people.chem.umass.edu/xray/solvent.html
[153] R. Steyrleuthner, S. Bange, D. Neher, J. Appl. Phys. 2009, 105, 64509.
[154] C. Gu, N. Huang, Y. Chen, H. Zhang, S. Zhang, F. Li, Y. Ma, D. Jiang, Angew. Chem. Int. Ed. Engl. 2016, 55, 3049—3053.
[155] G. Mao, Z. Wu, Q. He, B. Jiao, G. Xu, X. Hou, Z. Chen, Q. Gong, Appl. Surf. Sci. 2011, 257, 7394.
[156] H. Bildirir, V. G. Gregoriou, A. Avgeropoulos, U. Scherf, C. L. Chochos, Mater. Horiz. 2017, 4, 546.
[157] Y. Suzuki, Q. Zhang, C. Adachi, J. Mater. Chem. C 2015, 3, 1700.