研究生: |
張育浚 Chang, Yu-Chun |
---|---|
論文名稱: |
有限Theta提升的鏡像 On the Images of the Finite Theta Liftings |
指導教授: |
潘戍衍
PAN, SHU-YEN |
口試委員: |
魏福村
Fu-Tsun Wei 康明軒 Ming-Hsuan Kang |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 英文 |
論文頁數: | 43 |
中文關鍵詞: | 表現理論 、有限群表現 、有限Theta對應 、韋依表現 、約化對偶對 |
外文關鍵詞: | Representation theory, Representation theory of finite groups, Finite theta correspondence, Weil representation, Reductive dual pair |
相關次數: | 點閱:14 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
令$\mathbb{F}_q$為一個特徵為奇數的有限體以及約化對偶對$(G_n, G'_{n'})$ 為 $({\rm Sp}_{2n}(\mathbb{F}_{q}),$${\rm O}^{\epsilon}_{2n'}(\mathbb{F}_{q}))$ 或 $({\rm O}^{\epsilon}_{2n}(\mathbb{F}_{q}), {\rm Sp}_{2n'}(\mathbb{F}_{q}))$ 或 $({\rm Sp}_{2n}(\mathbb{F}_{q}), {\rm O}_{2n'+1}(\mathbb{F}_{q}))$ 或 $({\rm O}_{2n+1}(\mathbb{F}_{q}), {\rm Sp}_{2n'}(\mathbb{F}_{q}))$,其中$\epsilon=+$ 或 $\;-$。令$\Theta_{G_n, G'_{n'}}$為對於$(G_n, G'_{n'})$的theta對應。在這篇論文中,我們利用潘戍衍的結果,這些結果顯示$\Theta_{G_n, G'_{n'}}$對應可以被對於一些Lusztig的符號以及半單共軛類的一些組合的關係所刻劃。我們描述了一些有趣的$n'$與$\left\{\rho'\in{\rm Irr}(G'_{n'})\;\middle|\;(\rho, \rho')\in\Theta_{G_n, G'_{n'}} \right\}$之間的關係(當固定住$G_n$與$\rho\in{\rm Irr}(G_n)$時),以及利用這些組合的關係來證明它們。另外,當$(G_n, G'_{n'})$在穩定範圍時,我們給出一個限制在群$G_n\times G'_{n'}$上的Weil表現的分解,這個分解是Felipe Montealegre-Mora 與 David Gross的結果的一個推廣。
Let $\mathbb{F}_q$ be a finite field of odd characteristic. Let the
reductive dual pair $(G_n, G'_{n'})$ be $({\rm Sp}_{2n}(\mathbb{F}_{q}), {\rm O}^{\epsilon}_{2n'}(\mathbb{F}_{q}))$ or $({\rm O}^{\epsilon}_{2n}(\mathbb{F}_{q}), {\rm Sp}_{2n'}(\mathbb{F}_{q}))$ or $({\rm Sp}_{2n}(\mathbb{F}_{q}), {\rm O}_{2n'+1}(\mathbb{F}_{q}))$ or $({\rm O}_{2n+1}(\mathbb{F}_{q}),$ ${\rm Sp}_{2n'}(\mathbb{F}_{q}))$, where $\epsilon=+$ or $-$. Let $\Theta_{G_n, G'_{n'}}$ be the theta correspondence for the pair $(G_n, G'_{n'})$. In this paper, we use the results from Shu-Yen Pan which showed that the correspondence $\Theta_{G_n, G'_{n'}}$ can be characterized by some combinatorial conditions on some symbols and some semisimple conjugacy classes corresponding to $G_n$ and $G'_{n'}$. We describe some interesting relations between $n'$ and the set $\left\{\rho'\in{\rm Irr}(G'_{n'})\;
\middle|\;(\rho, \rho')\in\Theta_{G_n, G'_{n'}} \right\}$ (with a fixed $G_n$ and a fixed $\rho\in{\rm Irr}(G_n)$), and use these combinatorial conditions to prove them. In addition, when $(G_n, G'_{n'})$ is in the stable range, we give a decomposition of the Weil representation restricted to the group $G_n\times G'_{n'}$, which is a generalization of a result from Felipe Montealegre-Mora and David Gross.