簡易檢索 / 詳目顯示

研究生: 儲中文
Jong-Wen Chwu
論文名稱: 超薄玻璃液晶顯示器的製造方式與品質分析研究
Cell thinning and quality analysis of liquid crystal displays
指導教授: 周立人博士
Dr. Li-Jen Chou
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 87
中文關鍵詞: 液晶顯示器拋光薄化技術玻璃研磨
外文關鍵詞: liquid crystal displays, polishing, thinning technology, glass, lapping
相關次數: 點閱:81下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 減少液晶顯示器(LCD)面板的厚度與重量,能有效提升顯示器的美觀性與可攜帶性。LCD面板的玻璃薄化製程技術,能同時達到面板的厚度減薄與重量減輕,此製程技術是使用於薄膜電晶體(TFT)與彩色濾光片(CF)對組之後。
    本研究的第一部分,探討LCD面板的玻璃經由氫氟酸(HF)溶液進行蝕刻減薄,但面板表面微小的缺陷會因等向性蝕刻而變大,進而影響面板的品質;此缺陷可嘗試由拋光製程去除,但拋光LCD面板與拋光一般玻璃不同,研究結果顯示不同的LCD面板設計,需搭配不同的拋光參數;此外,開發一種使用塗膠的方式,經證實可有效蓋住缺陷,並可避免因使用拋光製程而限制LCD面板的設計。
    本研究的第二部分,是針對單面式機械研磨機於薄化製程後,可能造成LCD面板表面厚度不均的缺點進行研究;先以建立數學模式探討此製程的原理,再經由實驗進一步驗證此模式的可行性,並應用此模式求得此單面式機械研磨機的最佳製程參數與最適量產用機台尺寸。
    本研究的第三部分及第四部分,則是開發全新且環保的LCD面板玻璃薄化製程技術,此兩種新技術都不會用到HF,也不會有傳統機械式研磨產生的粉塵,且可比傳統機械式的玻璃薄化機有更高的玻璃研磨率,並可容易製造出具有高品質且不同厚度TFT與CF玻璃的LCD面板,經實驗測試此兩種新技術都具有穩定的製程與可量產性。


    Thinning of liquid crystal display (LCD) panels effectively decreases overall thickness and weight of panels, thereby enhancing the aesthetics and ease of use of portable display devices. The technology is typically carried out after the thin-film transistor (TFT) and color filter (CF) substrates are assembled.
    The first part of this study presents the thickness of panels etched by HF solution with surface etching defects. Polishing effectively removes these defects from glass. However, polishing a panel is more difficult than polishing glass and a suitable polishing approach is developed. In addition, spin-coating a protective layer above the surface fills the defects and retains optical performance. Unlike polishing, the proposed method applies no pressure to the inner structure in the panel.
    The second part of the study formulates a new mathematical model of the mechanism of the single-sided lapping machine in the LCD cell thinning process; the model is confirmed experimentally. The model can help to optimize the parameters of the process.
    In the third part of this study, a novel technology is used in an environmentally friendly process of mechanical thinning. It offers lower surface roughness, a higher cut rate and a lower operating pressure than slurry lapping.
    The final part of this study develops another novel technology, which provides a higher removal rate, better thickness uniformity and finer surface roughness than slurry lapping. The two novel approaches can produce the TFT-LCD panels that are composed of differently thick TFT and CF substrates. Additionally, they methods are stable and practicable for producing thinning cells.

    Abstract I Acknowledgement III Contents IV List of Tables VII List of Figures VIII List of Abbreviations and Acronyms XI Chapter 1 Introduction 1-1 Thinning technology 1 1-2 Chemical process 1 1-2-1 Dipping 2 1-2-2 Spray type 2 1-3 Mechanical process 3 1-3-1 Double-sided machining 3 1-3-2 Single-sided machining 3 1-3-3 Grinding 4 Chapter 2 Eliminating Surface Defects in Thinning Liquid Crystal Displays 2-1 Introduction 12 2-2 Experimental procedures 13 2-3 Results and Discussion 13 2-3-1 Surface defect from thinning process 13 2-3-2 Eliminating surface defects 14 2-3-3 Reliability test after polishing 14 2-3-4 Analysis surface strength after polishing 15 Chapter 3 Novel Method for Repairing Defects in Etched-Thinning Liquid Crystal Displays 3-1 Introduction 25 3-2 Experimental procedures 25 3-3 Results and Discussion 26 3-3-1 Optical performance 26 3-3-2 Strengthening 27 Chapter 4 A Model for Simulation and Optimization of LCD Cell Thinning Process 4-1 Introduction 36 4-2 Theory and Assumption 37 4-3 Results and Discussion 39 Chapter 5 Environmentally Friendly Cell Thinning Approach 5-1 Introduction 48 5-2 Experimental procedures 48 5-3 Results and Discussion 49 Chapter 6 A Novel Cell Thinning Method for Liquid Crystal Displays 6-1 Introduction 60 6-2 Experimental procedures 60 6-2-1 Mechanism of grinding machine 60 6-2-2 Grinding process arrangement 61 6-3 Results and Discussion 62 6-3-1 Wear of grindstone 62 6-3-2 Grinding-condition effect on grindstone wear 63 6-3-3 Grinding-condition effect on surface roughness 63 6-3-4 Grinding process optimization 64 Chapter 7 Summary and Conclusions 7-1 Eliminating surface defects in thinning liquid crystal displays 73 7-2 Novel defect-repairing method for etched-thinning liquid crystal displays 73 7-3 A model for simulation and optimization of LCD cell thinning process 74 7-4 Environmentally friendly cell thinning approach 74 7-5 A novel cell thinning method for liquid crystal displays 75 7-6 Research contribution and competitor comparison 75 References 78 Publication List 84 Autobiography 87

    [1-1].K. Takechi, H. Kanoh, and S. Otsuki, Very High Rate and Uniform Glass Etching with HF/HCl Spray for Transferring Thin-Film Transistor Arrays to Flexible Substrates, Jpn. J. Appl. Phys. 45 (2006) 6008.
    [1-2].J. Y. Byun and K. W. Lee, A flexible 8.4-in. Color Low-Temperature Poly-Si TFT-LCD, Proc. 9th IDW, 1 (2002) 319.
    [1-3].H. Ohkuma, K. Tajima, and K. Tomiki, Development of a Manufacturing Process for a Thin, Lightweight LCD Cell, SID Int. Symp. Dig. Tech. Pap. 31 (2000) 168.
    [1-4].Y. C. Liu, L. Y. Yeh, J. W. Chwu, C. C. Lin, M. S. Chen, and F. Y. Gan, A Novel Cell Thinning Method for Liquid Crystal Displays, Proc. 14th IDW, 1 (2007) 141.
    [1-5].C. Iliescu and F. E. H. Tay, Wet Etching of Glass, Proc. Int. Semiconductor Conf. 1 (2005) 35.
    [1-6].B. Lesche, F. C. Garcia, E. N. Hering, W. Margulis, I. C. S. Carvalho, and F. Laurell, Etching of Silica Glass under Electric Fields, Phys. Rev. Lett. 78 (1997) 2172.
    [1-7].N. Belkhir, D. Bouzid, and V. Herold, Correlation between the Surface Quality and the Abrasive Grains Wear in Optical Glass Lapping, Tribol. Int. 40 (2007) 498.
    [1-8].B. E. Klamecki, Comparison of Material Removal Rate Models and Experimental Results for the Double-Sided Polishing Process, J. Mater. Process. Technol. 109 (2001) 248
    [1-9].Y. Sugano, Method for Manufacturing Display Panel Having Reduced Wall Thickness and Display Panel Having Reduced Wall Thickness, US patent: 6,646,711 B2 (2003)
    [1-10].Y. Shintao, Method for Manufacturing Flat Panel Display and Apparatus for Mechanically Polishing Outside Surface of Glass Substrate for Flat Panel Display, JP patent: 3,741,708 B2 (2006)
    [1-11].J. Y. Byun and K. W. Lee, A Novel Route for Thinning of LCD Glass Substrates, SID Int. Symp. Dig. Tech. Pap. 37 (2006) 1786.
    [1-12].E. G. Colgan, F. E. Doany, T. Jounai , S. Maruyama, H. Ohkuma, R.N. Singh and M. Suzuki, LCD Cell Construction by Mechanical Thinning of a Color Filter Substrate, US patent: 6,816,225 B2 (2004)
    [1-13].Q. Zhao, Y. C. Liang, D. Stephenson and J. Corbett, Surface and Subsurface Integrity in Diamond Grinding of Optical Glasses on Tetraform ‘C’, Int. J. Mach. Tools & Manufacture (2007) (Manuscript).
    [2-1].K. Takechi, H. Kanoh, and S. Otsuki, Very High Rate and Uniform Glass Etching with HF/HCl Spray for Transferring Thin-Film Transistor Arrays to Flexible Substrates, Jpn. J. Appl. Phys. 45 (2006) 6008.
    [2-2].B. Lesche, F. C. Garcia, E. N. Hering, W. Margulis, I. C. S. Carvalho, and F. Laurell, Etching of Silica Glass under Electric Fields, Phys. Rev. Lett. 78 (1997) 2172.
    [2-3].J. Y. Byun and K. W. Lee, A Novel Route for Thinning of LCD Glass Substrates, SID Int. Symp. Dig. Tech. Pap. 37 (2006) 1786.
    [2-4].B. E. Klamecki, Comparison of Material Removal Rate Models and Experimental Results for the Double-Sided Polishing Process, J. Mater. Process. Technol. 109 (2001) 248
    [2-5].J. W. Chwu, Y. C. Liu, L. J. Chou, J. Y. Wu, C. C. Lin, L. Y. Yeh, B. A. Sventek, W. Lin, A. Hsu, and R. Chen, Environmental Cell Thinning of Advanced Liquid Crystal Displays, Jpn. J. Appl. Phys. 46 (2007) 6688.
    [2-6].G. B. Portelli, Structural Adhesives– Chemistry and Technology, ed. S. R. Hartshorn, Plenum Press, New York (1986) 412.
    [2-7].H. T. Chiu and J. S. Chung, Property and Reliability of Liquid Underfill Material for IC Packaging, J. Appl. Polym. Sci. 102 (2006) 3504.
    [2-8].T. Fett, G. Rizzi, J. P. Guin ,and S. M. Wiederhorn, Ring-on-Ring Strength Measurements on Rectangular Glass Slides, J. Mater. Sci. 42 (2007) 393
    [2-9].W.A. Weibull, A Statistical Distribution Function of Wide Applicability, J. Appl. Mech. 18 (1951) 292.
    [2-10].A. Weber, S. Deutschbein, and A. Plichta, Thin Glass-Polymer Systems as Flexible Substrates for Displays, SID Int. Symp. Dig. Tech. Pap. 33 (2002) 53.
    [3-1].B. E. Klamecki, Comparison of Material Removal Rate Models and Experimental Results for the Double-Sided Polishing Process, J. Mater. Process. Technol. 109 (2001) 248
    [3-2].J. W. Chwu, Y. C. Liu, L. J. Chou, J. Y. Wu, C. C. Lin, L. Y. Yeh, B. A. Sventek, W. Lin, A. Hsu, and R. Chen, Environmental Cell Thinning of Advanced Liquid Crystal Displays, Jpn. J. Appl. Phys. 46 (2007) 6688.
    [3-3].A. Weber, S. Deutschbein, and A. Plichta, Thin Glass-Polymer Systems as Flexible Substrates for Displays, SID Int. Symp. Dig. Tech. Pap. 33 (2002) 53.
    [3-4].T. Fett, G. Rizzi, J. P. Guin ,and S. M. Wiederhorn, Ring-on-Ring Strength Measurements on Rectangular Glass Slides, J. Mater. Sci. 42 (2007) 393
    [3-5].ASTM C1499-05, Standard Test Method for Monotonic Equibiaxial Flexural Strength of Advanced Ceramics at Ambient Temperature
    [3-6].ASTM D6272-02, Standard Test Method for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials by Four-Point Bending.
    [4-1].B. E. Klamecki, Comparison of Material Removal Rate Models and Experimental Results for the Double-Sided Polishing Process, J. Mater. Process. Technol. 109 (2001) 248
    [4-2].T. Gopal and J. B. Talbot, Use of Slurry Colloidal Behavior in Modeling of Material Removal Rates for Copper CMP, J. Electrochem. Soc. 154 (2007) H507.
    [4-3].Y. Homma, Dynamical Mechanism of Chemical Mechanical Polishing Analyzed to Correct Preston's Empirical Model, J. Electrochem. Soc. 153 (2006) G587.
    [4-4].D. Z. Chen and B. S. Lee, Parameter Analysis of Chemical Mechanical Polishing: An Investigation Based on the Pattern Planarization Model, J. Electrochem. Soc. 146 (1999) 3420.
    [4-5].W. T. Tseng and Y. L. Wang: Re-examination of Pressure and Speed Dependences of Removal Rate during Chemical-Mechanical Polishing Processes J. Electrochem. Soc. 144 (1997) L15.
    [4-6].P. H. Chen, H. C. Shih, B. W. Huang, and J. W. Hsu, Catalytic-Pad Chemical Kinetics Model of CMP, Electrochem. Solid-State Lett. 6 (2003) G140.
    [4-7].M. Bielmann, U. Mahajan, and R. K. Singh, Effect of Particle Size during Tungsten Chemical Mechanical Polishing, Electrochem. Solid-State Lett. 2 (1999) 401.
    [4-8].L. Guo and R. S. Subramanian, Mechanical Removal in CMP of Copper Using Alumina Abrasives, J. Electrochem. Soc. 151 (2004) G104.
    [4-9].N. Belkhir, D. Bouzid, and V. Herold, Correlation between the Surface Quality and the Abrasive Grains Wear in Optical Glass Lapping, Tribol. Int. 40 (2007) 498.
    [4-10].F. W. Preston, The Theory and Design of Plate Glass Polishing Machines, J. Soc. Glass Technol. 11 (1927) 214.
    [5-1].T. Fletcher, F. T. Gobena, V. Romero, B. Sventek, and W. Schoenhofen, Conditioning Method Development for 3M Trizact Diamond Tile Fixed Abrasives Used in the Finishing of Brittle Substrates; Technical Digest, Proc. SPIE TD03 (2005) 38.
    [5-2].T. Fletcher, F. Gobena, and V. Romero, Diamond Fixed Abrasives Lapping of Brittle Substrates, Ind. Diamond Rev. 1 (2005) 26.
    [5-3].T. D. Fletcher, P. S. Lugg and V. D. Romero, Self-Contained Conditioning Abrasive Article, US patent: 7,169,031 B1 (2007)
    [5-4].A. J. Ouderkirk, P. S. Lugg, O. B. JR., C. A. Leatherdale and W. D. Joseph, Process for Manufacturing Optical and Semiconductor Elements, US patent: 2006/0094340 A1 (2006)
    [5-5].K. T. Yeh, H. Y. Lin, and W. A. Loong, Simulation of Applications of High-Transmittance Embedded Layer in Transmittance Control Mask and Optimization of Attenuated Phase-Shifting Mask by Design of Experiment, Jpn. J. Appl. Phys. 46 (2007) 105.
    [6-1].T. Takahashi and P. D. Funkenbusch, Micromechanics of Diamond Composite Tools during Grinding of Glass, Mater. Sci. Eng. A. 285 (2000) 69.
    [6-2].B. Zhang, F. Yang, J. Wang, Z. Zhu, and R. Monahan, Stock Removal Rate and Workpiece Strength in Multi-Pass Grinding of Ceramics, J. Mater. Process. Technol. 104 (2000) 178.
    [6-3].P. L. Tso, C. C. Teng, A Study of the Total Thickness Variation in the Grinding of Ultra-Precision Substrates, J. Mater. Process. Technol. 116 (2001) 182.
    [6-4].S. C. Salmon, Modern Grinding Process Technology, McGraw-Hill Inc. (1992) 161.
    [6-5].K. T. Yeh, H. Y. Lin, and W. A. Loong, Simulation of Applications of High-Transmittance Embedded Layer in Transmittance Control Mask and Optimization of Attenuated Phase-Shifting Mask by Design of Experiment, Jpn. J. Appl. Phys. 46 (2007) 105.
    [6-6].S. Malkin, Grinding Technology: Theory and Applications of Machining with Abrasives, Society of Manufacturing Engineers (1989) 79.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE