簡易檢索 / 詳目顯示

研究生: 杜瑋庭
Wei-Ting Tu
論文名稱: 利用可脫附之親和力黏著層開發可釋放性之細胞晶片
Development of a releasable antibody-based cell chip using a switchable affinity binding layer
指導教授: 曾繁根
Fan-Gang Tseng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 69
中文關鍵詞: 細胞篩選晶片表面接枝技術智慧型水膠疏水性作用力
相關次數: 點閱:59下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 流式細胞儀(flow cytometry)為一臨床檢驗及生物學研究上相當重要的工具,除了可根據檢體(通常為細胞)之光學性質及其所帶的螢光種類進行細胞種類分佈的分析外,更可根據每一細胞的分析結果進行收集,以針對特定細胞群進行更進一步之研究。然而由於流式細胞儀體積龐大、造價昂貴、僅能同時偵測有限種類的光學標的,且在分選時至多只能同時收集四種不同的細胞,因此在使用上仍有不便。抗體晶片將多種抗體以陣列方式排列在基材上,可同時針對大量(數百種)抗原進行快速地分析,除了操作簡單外,還具有分析成本低廉之優點。然而,目前的抗體晶片只具有分析,而不具有標的細胞收集之功能,且目前也無研究探討收集抗體晶片上之標的細胞的可能機制。
    為了使目前抗體晶片具有釋放標的細胞之功能,本研究測試了三種可能的釋放機制。1.利用酵素分解抗體結構--本研究以螢光標定之蛋白進行釋放測試,研究結果顯示胰蛋白酶作用30分鐘之釋放效率約為60%,且可成功釋放抗體晶片上之Jurkat細胞。2.利用溫度敏感而使流變性質改變之水膠作為釋放基材--由於高濃度之F127對細胞有毒殺作用,且F127之濃度及環境鹽類濃度易受影響,因此並非是個良好的釋放方法。3.利用表面接枝NIPAM之PDMS於溫度變化產生之親-疏水特性變化進行捕捉及釋放—本研究由基材之溫度敏感膨潤現象及水接觸角變化推測光接枝NIPAM於PDMS基材上為可行且成功的。另外,本研究也藉由奈米聚苯乙烯球之捕捉釋放實驗及小牛血清白蛋白之吸附測試得知表面修飾NIPAM之PDMS具有抗非特異性吸附之特性,且於37℃時具有捕捉疏水性分子之效果。
    本研究結果對於釋放抗體晶片上之標的細胞提供了一些解決方向。未來期望本研究能結合微流體系統之設計,製造一同時具有多標的分析及收集功能之細胞篩選晶片。


    第壹章 序論 1 第貳章 文獻回顧 2 2.1 現有細胞篩選分析工具回顧 2 2.1.1 流式細胞儀 2 2.1.2 細胞分離晶片 4 2.1.3 細胞分析晶片 9 2.2 設計概念評估 12 2.2.1 利用酵素專一性分解抗體分子 12 2.2.2 物理性釋放基材 16 第參章 實驗材料與方法 29 3.1 利用專一性酵素進行細胞釋放 29 3.1.1 APTS玻片製備及操作流程 29 3.1.2 單分子自組裝膜的活化及抗體的固定 29 3.1.3 螢光掃瞄及定量方式 30 3.1.4 抗體晶片測試 31 3.1.5 利用專一性抗體進行細胞釋放測試 32 3.2 利用溫度改變流變性質之水膠進行細胞釋放 33 3.2.1 Pluronic®F127水膠玻片製備 33 3.3 利用疏水性作用力捕捉及釋放細胞 34 3.3.1 PDMS接枝聚異丙基丙烯醯胺 (NIPAM-g-PDMS) 34 3.3.2 NIPAM-g-PDMS膨潤特性量測 36 3.3.3 NIPMA-g-PDMS親疏水特性量測 36 3.3.4 奈米聚苯乙烯球(Polystyrene beads)釋放測試 37 3.3.5 非特異性吸附測試 39 第肆章 實驗結果與討論 40 4.1 抗體專一性酵素應用於細胞釋放 40 4.1.1 利用螢光蛋白測試胰蛋白酶的釋放能力 40 4.1.2 利用Jurkat cell測試胰蛋白酶的釋放功能 44 4.2 PLURONIC®F127作為可釋放性基材 46 4.3 疏水性作用力作為釋放機制 48 4.3.1 NIPAM-g-PDMS之特性量測 48 4.3.2 奈米聚苯乙烯球之捕捉及釋放測試 52 4.3.3 抗非特異性吸附特性測試 57 第伍章 結論 58 第陸章 未來方向 60 第柒章 參考文獻 63

    [1] F. Joux and P. Lebaron, "Use of fluorescent probes to assess physiological functions of bacteriaat single-cell level," Microbes and Infection, vol. 2, pp. 1523-1535, 2000.
    [2] E. T. Farinas, "Fluorescence activated cell sorting for enzymatic activity," Combinatorial Chemistry & High Throughput Screening, vol. 9, pp. 321-328, May 2006.
    [3] H. Wernerus, P. Samuelson, and S. Stahl, "Fluorescence-activated cell sorting of specific affibody-displaying staphylococci," Applied and Environmental Microbiology, vol. 69, pp. 5328-5335, Sep 2003.
    [4] P. E. Mozdziak, J. Angerman-Stewart, B. Rushton, S. L. Pardue, and J. N. Petitte, "Isolation of chicken primordial germ cells using fluorescence-activated cell sorting," Poultry Science, vol. 84, pp. 594-600, Apr 2005.
    [5] T. Ordog, D. Redelman, L. J. Miller, V. J. Horvath, Q. Zhong, G. Almeida-Porada, E. D. Zanjani, B. Horowitz, and K. M. Sanders, "Purification of interstitial cells of Cajal by fluorescence-activated cell sorting," American Journal of Physiology-Cell Physiology, vol. 286, pp. C448-C456, Feb 1 2004.
    [6] T. Fujikawa, T. Hirose, H. Fujii, S. Oe, K. Yasuchika, H. Azuma, and Y. Yamaoka, "Purification of adult hepatic progenitor cells using green fluorescent protein (GFP)-transgenic mice and fluorescence-activated cell sorting," Journal of Hepatology, vol. 39, pp. 162-170, Aug 2003.
    [7] N. Masson, I. Currie, A. Shukla, J. Garden, R. Parks, and J. Ross, "Characterisation of human hepatic stem cells isolated from foetal liver by fluorescence activated cell sorting," Gastroenterology, vol. 126, pp. A688-A688, Apr 2004.
    [8] S. Singh, V. Bhattacherjee, P. Mukhopadhyay, C. A. Worth, S. R. Wellhausen, C. P. Warner, R. M. Greene, and M. M. Pisano, "Fluorescence-activated cell sorting of EGFP-labeled neural crest cells from murine embryonic craniofacial tissue," Journal of Biomedicine and Biotechnology, pp. 232-237, 2005.
    [9] N. M. Masson, I. S. Currie, A. Shukla, O. J. Garden, R. W. Parks, and J. A. Ross, "Fluorescence-activated cell sorting for a population of human hepatic stem cells from fetal liver," British Journal of Surgery, vol. 91, pp. 1212-1212, Sep 2004.
    [10] H. Mohamed, L. D. McCurdy, D. H. Szarowski, S. A. D. S. Duva, J. N. A. T. J. N. Turner, and M. A. C. M. Caggana, "Development of a rare cell fractionation device: application for cancer detection," Nanobioscience, IEEE Transactions on, vol. 3, pp. 251-256, 2004.
    [11] B. S. Cho, T. G. Schuster, X. Y. Zhu, D. Chang, G. D. Smith, and S. Takayama, "Passively driven integrated microfluidic system for separation of motile sperm," Analytical Chemistry, vol. 75, pp. 1671-1675, Apr 1 2003.
    [12] V. I. Furdui and D. J. Harrison, "Immunomagnetic T cell capture from blood for PCR analysis using microfluidic systems," Lab on a Chip, vol. 4, pp. 614-618, 2004.
    [13] J. M. S. Cabral, "Cell partitioning in aqueous two-phase polymer systems," in Cell Separation: Fundamentals, Analytical and Preparative Methods. vol. 106, 2007, pp. 151-171.
    [14] V. K. M. N. J. i. E. M. S. Masumi Yamada, "Continuous cell partitioning using an aqueous two-phase flow system in microfluidic devices," Biotechnology and Bioengineering, vol. 88, pp. 489-494, 2004.
    [15] K. H. Nam, W. J. Chang, H. Hong, S. M. Lim, D. I. Kim, and Y. M. Koo, "Continuous-flow fractionation of animal cells in microfluidic device using aqueous two-phase extraction," Biomedical Microdevices, vol. 7, pp. 189-195, Sep 2005.
    [16] A. Kumar, M. Kamihira, I. Y. Galaev, B. Mattiasson, and S. Iijima, "Type-specific separation of animal cells in aqueous two-phase systems using antibody conjugates with temperature-sensitive polymers," Biotechnology and Bioengineering, vol. 75, pp. 570-580, Dec 5 2001.
    [17] S. K. Murthy, A. Sin, R. G. Tompkins, and M. Toner, "Effect of flow and surface conditions on human lymphocyte isolation using microfluidic chambers," Langmuir, vol. 20, pp. 11649-11655, Dec 21 2004.
    [18] L. Belov, O. de la Vega, C. G. dos Remedios, S. P. Mulligan, and R. I. Christopherson, "Immunophenotyping of leukemias using a cluster of differentiation antibody microarray," Cancer Res, vol. 61, pp. 4483-9, Jun 1 2001.
    [19] I. K. Ko, K. Kato, and H. Iwata, "Antibody microarray for correlating cell phenotype with surface marker," Biomaterials, vol. 26, pp. 687-696, 2005.
    [20] I. K. Ko, K. Kato, and H. Iwata, "Parallel analysis of multiple surface markers expressed on rat neural stem cells using antibody microarrays," Biomaterials, vol. 26, pp. 4882-4891, Aug 2005.
    [21] M. Nakajima, T. Ishimuro, K. Kato, I. K. Ko, I. Hirata, Y. Arima, and H. Iwata, "Combinatorial protein display for the cell-based screening of biomaterials that direct neural stem cell differentiation," Biomaterials, vol. 28, pp. 1048-1060, Feb 2007.
    [22] A. Sreekumar, M. K. Nyati, S. Varambally, T. R. Barrette, D. Ghosh, T. S. Lawrence, and A. M. Chinnaiyan, "Profiling of cancer cells using protein microarrays: Discovery of novel radiation-regulated proteins," Cancer Research, vol. 61, pp. 7585-7593, Oct 15 2001.
    [23] M. Adamczyk, J. C. Gebler, and J. Wu, "Papain digestion of different mouse IgG subclasses as studied by electrospray mass spectrometry," Journal of Immunological Methods, vol. 237, pp. 95-104, 2000.
    [24] M. Mariani, M. Camagna, L. Tarditi, and E. Seccamani, "A new enzymatic method to obtain high-yield F(ab)2 suitable for clinical use from mouse IgGl," Mol Immunol, vol. 28, pp. 69-77, Jan-Feb 1991.
    [25] A. Kikuchi and T. Okano, "Intelligent thermoresponsive polymeric stationary phases for aqueous chromatography of biological compounds," Progress in Polymer Science, vol. 27, pp. 1165-1193, Aug 2002.
    [26] Y. Qiu and K. Park, "Environment-sensitive hydrogels for drug delivery," Advanced Drug Delivery Reviews, vol. 53, pp. 321-339, Dec 31 2001.
    [27] E. S. Gil and S. M. Hudson, "Stimuli-reponsive polymers and their bioconjugates," Progress in Polymer Science, vol. 29, pp. 1173-1222, 2004.
    [28] R. Bhardwaj and J. Blanchard, "Controlled-release delivery system for the alpha-MSH analog melanotan-I using poloxamer 407," Journal of Pharmaceutical Sciences, vol. 85, pp. 915-919, Sep 1996.
    [29] M. Guzman, M. R. Aberturas, F. Garcia, and J. Molpeceres, "Gelatin Gels and Polyoxyethylene-Polyoxypropylene Gels - Comparative-Study of Their Properties," Drug Development and Industrial Pharmacy, vol. 20, pp. 2041-2048, 1994.
    [30] S. Miyazaki, S. Takeuchi, C. Yokouchi, and M. Takada, "Pharmaceutical Application of Biomedical Polymers .11. Pluronic F-127 Gels as a Vehicle for Topical Administration of Anticancer Agents," Chemical & Pharmaceutical Bulletin, vol. 32, pp. 4205-4208, 1984.
    [31] V. Lenaerts, C. Triqueneaux, M. Quarton, F. Riegfalson, and P. Couvreur, "Temperature-Dependent Rheological Behavior of Pluronic F-127 Aqueous-Solutions," International Journal of Pharmaceutics, vol. 39, pp. 121-127, Sep 1987.
    [32] M. Morishita, J. M. Barichello, K. Takayama, Y. Chiba, S. Tokiwa, and T. Nagai, "Pluronic (R) F-127 gels incorporating highly purified unsaturated fatty acids for buccal delivery of insulin," International Journal of Pharmaceutics, vol. 212, pp. 289-293, Jan 2001.
    [33] Z. G. W. T. P. J. E. A. Pec, "Biological activity of urease formulated in poloxamer 407 after intraperitoneal injection in the rat," Journal of Pharmaceutical Sciences, vol. 81, pp. 626-630, 1992.
    [34] T. P. Johnston, M. A. Punjabi, and C. J. Froelich, "Sustained delivery of interleukin-2 from a poloxamer 407 gel matrix following intraperitoneal injection in mice," Pharm Res, vol. 9, pp. 425-34, Mar 1992.
    [35] C. M. Clokie and M. R. Urist, "Bone morphogenetic protein excipients: comparative observations on poloxamer," Plast Reconstr Surg, vol. 105, pp. 628-37, Feb 2000.
    [36] J. J. Escobar-Chavez, M. Lopez-Cervantes, A. Naik, Y. N. Kalia, D. Quintanar-Guerrero, and A. Ganem-Quintanar, "Applications of thermoreversible pluronic F-127 gels in pharmaceutical formulations," Journal of Pharmacy and Pharmaceutical Sciences, vol. 9, pp. 339-358, Sep-Dec 2006.
    [37] Y. I. Chung, S. Y. Lee, and G. Tae, "The effect of heparin on the gellation of Pluronic F-127 hydrogel," Colloids and Surfaces a-Physicochemical and Engineering Aspects, vol. 284, pp. 480-484, Aug 15 2006.
    [38] H. E. S. F. J. M. Gilbert, "Peritoneal closure after lateral paramedian incision," British Journal of Surgery, vol. 74, pp. 113-115, 1987.
    [39] N. K. Pandit and J. Kisaka, "Loss of gelation ability of Pluronic(R) F127 in the presence of some salts," International Journal of Pharmaceutics, vol. 145, pp. 129-136, Dec 6 1996.
    [40] N. Malmstadt, P. Yager, A. S. Hoffman, and P. S. Stayton, "A Smart Microfluidic Affinity Chromatography Matrix Composed of Poly(N-isopropylacrylamide)-Coated Beads," Anal. Chem., vol. 75, pp. 2943-2949, 2003.
    [41] O. Kim, K. Na, J. Lee, J. Jung, D. Kim, S. Park, K. Yun, and J. Hyun, "Polystyrene microbeads modified with an elastin-like biopolymer for stimuli-responsive immunodetection," J Biomater Sci Polym Ed, vol. 19, pp. 863-73, 2008.
    [42] L. De Stefano, L. Rotiroti, I. Rendina, L. Moretti, V. Scognamiglio, M. Rossi, and S. D'Auria, "Porous silicon-based optical microsensor for the detection of L-glutamine," Biosensors & Bioelectronics, vol. 21, pp. 1664-1667, Feb 15 2006.
    [43] H. Yan and K. Tsujii, "Potential application of poly(N-isopropylacrylamide) gel containing polymeric micelles to drug delivery systems," Colloids and Surfaces B: Biointerfaces, vol. 46, pp. 142-146, 2005.
    [44] R. M. P. da Silva, J. F. Mano, and R. L. Reis, "Smart thermoresponsive coatings and surfaces for tissue engineering: switching cell-material boundaries," Trends in Biotechnology, vol. 25, pp. 577-583, 2007.
    [45] X. C. D. J. G. B. D. R. D. G. C. Heather E. Canavan, "Cell sheet detachment affects the extracellular matrix: A surface science study comparing thermal liftoff, enzymatic, and mechanical methods," Journal of Biomedical Materials Research Part A, vol. 75A, pp. 1-13, 2005.
    [46] H. G. Schild, "POLY (N-ISOPROPYLACRYLAMIDE) - EXPERIMENT, THEORY AND APPLICATION," Progress in Polymer Science, vol. 17, pp. 163-249, 1992.
    [47] T. Okano, N. Yamada, M. Okuhara, H. Sakai, and Y. Sakurai, "Mechanism of cell detachment from temperature-modulated, hydrophilic-hydrophobic polymer surfaces," Biomaterials, vol. 16, pp. 297-303, 1995.
    [48] M. Kamihira and A. Kumar, "Development of separation technique for stem cells," in Cell Separation: Fundamentals, Analytical and Preparative Methods. vol. 106, 2007, pp. 173-193.
    [49] T. L. Sun, G. J. Wang, L. Feng, B. Q. Liu, Y. M. Ma, L. Jiang, and D. B. Zhu, "Reversible switching between superhydrophilicity and superhydrophobicity," Angewandte Chemie-International Edition, vol. 43, pp. 357-360, 2004.
    [50] S.-Y. Lin, K.-S. Chen, and R.-C. Liang, "Thermal micro ATR/FT-IR spectroscopic system for quantitative study of the molecular structure of poly(N-isopropylacrylamide) in water," Polymer, vol. 40, pp. 2619-2624, 1999.
    [51] P. S. Curti, M. R. de Moura, W. Veiga, E. Radovanovic, A. F. Rubira, and E. C. Muniz, "Characterization of PNIPAAm photografted on PET and PS surfaces," Applied Surface Science, vol. 245, pp. 223-233, May 30 2005.
    [52] K.-S. Chen, J.-C. Tsai, C.-W. Chou, M.-R. Yang, and J.-M. Yang, "Effects of additives on the photo-induced grafting polymerization of N-isopropylacrylamide gel onto PET film and PP nonwoven fabric surface," Materials Science and Engineering: C, vol. 20, pp. 203-208, 2002.
    [53] Y. G. Takei, T. Aoki, K. Sanui, N. Ogata, Y. Sakurai, and T. Okano, "Dynamic Contact-Angle Measurement of Temperature-Responsive Surface-Properties for Poly(N-Isopropylacrylamide) Grafted Surfaces," Macromolecules, vol. 27, pp. 6163-6166, Oct 10 1994.
    [54] Z. M. O. Rzaev, S. Dincer, and E. Piskin, "Functional copolymers of N-isopropylacrylamide for bioengineering applications," Progress in Polymer Science, vol. 32, pp. 534-595, May 2007.
    [55] B. Gupta, S. Mishra, and S. Saxena, "Preparation of thermosensitive membranes by radiation grafting of acrylic acid/N-isopropyl acrylamide binary mixture on PET fabric," Radiation Physics and Chemistry, vol. 77, pp. 553-560, 2008.
    [56] X. L. Wang and M. G. McCord, "Grafting of poly(N-isopropylacrylamide) onto nylon and polystyrene surfaces by atmospheric plasma treatment followed with free radical graft copolymerization," Journal of Applied Polymer Science, vol. 104, pp. 3614-3621, Jun 2007.
    [57] S. J. Lue, J.-J. Hsu, C.-H. Chen, and B.-C. Chen, "Thermally on-off switching membranes of poly(N-isopropylacrylamide) immobilized in track-etched polycarbonate films," Journal of Membrane Science, vol. 301, pp. 142-150, 2007.
    [58] Q. Liu, Z. Zhu, X. Yang, X. Chen, and Y. Song, "Temperature-sensitive porous membrane production through radiation co-grafting of NIPAAm on/in PVDF porous membrane," Radiation Physics and Chemistry, vol. 76, pp. 707-713, 2007.
    [59] Y. P. Wang, K. Yuan, Q. L. Li, L. P. Wang, S. J. Gu, and X. W. Pei, "Preparation and characterization of poly(N-isopropylacrylamide) films on a modified glass surface via surface initiated redox polymerization," Materials Letters, vol. 59, pp. 1736-1740, Jun 2005.
    [60] Y. Akiyama, A. Kikuchi, M. Yamato, and T. Okano, "Ultrathin poly(N-isopropylacrylamide) grafted layer on polystyrene surfaces for cell adhesion/detachment control," Langmuir, vol. 20, pp. 5506-5511, Jun 22 2004.
    [61] B. Yang and W. T. Yang, "Thermo-sensitive switching membranes regulated by pore-covering polymer brushes," Journal of Membrane Science, vol. 218, pp. 247-255, Jul 1 2003.
    [62] K. S. Chen, Y. A. Ku, C. H. Lee, H. R. Lin, F. H. Lin, and T. M. Chen, "Immobilization of chitosan gel with cross-linking reagent on PNIPAAm gel/PP nonwoven composites surface," Materials Science & Engineering C-Biomimetic and Supramolecular Systems, vol. 25, pp. 472-478, Jun 2005.
    [63] R. S. Irving, "Artificial skin I. Preparation and properties of pluronic F-127 gels for treatment of burns," Journal of Biomedical Materials Research, vol. 6, pp. 571-582, 1972.
    [64] V. P. Gilcreest, W. M. Carroll, Y. A. Rochev, I. Blute, K. A. Dawson, and A. V. Gorelov, "Thermoresponsive poly(N-isopropylacrylamide) copolymers: Contact angles and surface energies of polymer films," Langmuir, vol. 20, pp. 10138-10145, Nov 9 2004.
    [65] R. Wacker, H. Schroder, and C. M. Niemeyer, "Performance of antibody microarrays fabricated by either DNA-directed immobilization, direct spotting, or streptavidin-biotin attachment: a comparative study," Analytical Biochemistry, vol. 330, pp. 281-287, 2004.
    [66] J. R. Thonhoff, D. I. Lou, P. M. Jordan, X. Zhao, and P. Wu, "Compatibility of human fetal neural stem cells with hydrogel biomaterials in vitro," Brain Research, vol. 1187, pp. 42-51, 2008.
    [67] T. Caykara, S. Kiper, and G. Demirel, "Network parameters and volume phase transition behavior of poly(N-isopropylacrylamide) hydrogels," Journal of Applied Polymer Science, vol. 101, pp. 1756-1762, Aug 5 2006.
    [68] M. Ebara, J. M. Hoffman, P. S. Stayton, and A. S. Hoffman, "Surface modification of microfluidic channels by UV-mediated graft polymerization of non-fouling and 'smart' polymers," Radiation Physics and Chemistry, vol. 76, pp. 1409-1413, Aug-Sep 2007.
    [69] V. H. P. A. T. Ken Webb, "Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization," Journal of Biomedical Materials Research, vol. 41, pp. 422-430, 1998.
    [70] Y. Iwasaki, M. Takamiya, R. Iwata, S.-i. Yusa, and K. Akiyoshi, "Surface modification with well-defined biocompatible triblock copolymers: Improvement of biointerfacial phenomena on a poly(dimethylsiloxane) surface," Colloids and Surfaces B: Biointerfaces, vol. 57, pp. 226-236, 2007.
    [71] D. P. Wu, B. X. Zhao, Z. P. Dai, J. H. Qin, and B. C. Lin, "Grafting epoxy-modified hydrophilic polymers onto poly(dimethylsiloxane) microfluidic chip to resist nonspecific protein adsorption," Lab on a Chip, vol. 6, pp. 942-947, 2006.
    [72] S. Hu, X. Ren, M. Bachman, C. E. Sims, G. P. Li, and N. Allbritton, "Surface Modification of Poly(dimethylsiloxane) Microfluidic Devices by Ultraviolet Polymer Grafting," Anal. Chem., vol. 74, pp. 4117-4123, 2002.
    [73] F. J. Xu, J. Li, S. J. Yuan, Z. X. Zhang, E. T. Kang, and K. G. Neoh, "Thermo-responsive porous membranes of controllable porous morphology from triblock copolymers of polycaprolactone and poly(N-isopropylacrylamide) prepared by atom transfer radical polymerization," Biomacromolecules, vol. 9, pp. 331-9, Jan 2008.
    [74] I. Lokuge, X. Wang, and P. W. Bohn, "Temperature-controlled flow switching in nanocapillary array membranes mediated by poly(N-isopropylacrylamide) polymer brushes grafted by atom transfer radical polymerization," Langmuir, vol. 23, pp. 305-11, Jan 2 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE