研究生: |
林政佑 Lin, Cheng-Yu |
---|---|
論文名稱: |
原位合成型鋁基複合材料微結構與機械性質之研究 Microstructure and Mechanical Properties of In-situ Synthesized Aluminum Matrix Composites |
指導教授: |
張守一
Chang, Shou-Yi |
口試委員: |
賴宏仁
Lai, Hung-Ren 陳俊沐 Chen, Chun-Mu |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 107 |
中文關鍵詞: | 鋁基複合材料 、陶瓷強化材 、微結構 、機械性質 |
外文關鍵詞: | Aluminum Matrix Composites, Ceramic Reinforcements, Microstructure, Mechanical Properties |
相關次數: | 點閱:78 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋁基複合材料具有輕量、高強度、高剛性、優良斷裂韌性、耐疲勞、耐潛變、耐磨耗以及低熱膨脹係數與高熱傳效率等優點;其中微奈米陶瓷粒子強化鋁基複合材料又具有低成本、高強度、均向性等特色,是工程結構材料的優良選擇。有鑒於此,本研究開發原位生成TiB2粒子強化鋁基複合材料,分析其微結構與界面結構,並檢測其強度等機械性能;同時透過滾壓、固溶及時效處理控制析出強化。利用光學顯微鏡(OM)、X-射線繞射分析(XRD)、掃描式電子顯微鏡(SEM)、硬度試驗與拉伸試驗等方法,探究微結構、TiB2相與析出相對機械性能的影響,以提高鋁基複合材料的性能表現。結果顯示,鑄造態A205試片晶粒巨大且包含許多樹枝晶,晶粒外與樹枝晶間充滿Al¬2Cu相,TiB2強化材則存在於晶界上並形成團聚;經過滾壓、固溶處理與T6熱處理後,Al2Cu相除在晶界上析出外,亦在晶粒內析出,而TiB2強化材則較鑄造態分散,因此使硬度與降伏強度上升,但延性下降。
Aluminum-based composites have the advantages of light weight, high strength, high rigidity, excellent fracture toughness, fatigue resistance, creep resistance, wear resistance, low thermal expansion coefficient and high heat transfer efficiency. Among them, micro-nano ceramic particle reinforced aluminum-based composites have the characteristics of low cost, high strength, uniformity, etc., which is an excellent choice for engineering structural materials. Therefore, this study developed in-situ TiB2 particle reinforced aluminum matrix composites, analyzed their microstructure, interface structure, and measured their mechanical properties. At the same time, rolling, solid-solution treatment and aging treatment were applied to the composites to control the precipitation strengthening. Optical microscope (OM), X-ray diffraction analysis (XRD), scanning electron microscope (SEM), hardness test and tensile test were used to investigate the influence of microstructure, TiB2 phase and precipitations on mechanical properties to improve the performance of aluminum-based composites. The results show that the as-cast A205 sample has dendrite grains. The Al¬2Cu precipitated at the grain boundaries and the inter dendrites, while the TiB2 particles agglomerated at the grain boundaries. After rolling and the heat treatment, in addition to the grain boundaries, the Al2Cu phase also precipitated in the grains, while the TiB2 particles is more dispersed than the as-cast state, so the hardness and yield strength were increased, but the ductility was reduced.
[1] N. Chawla and K. K. Chawla, Metal matrix composites, 2nd Ed., Springer International Publishing AG., 2013.
[2] D.M. Wilson and L.R. Visser (2001) Composites A, 32A, 1143.
[3] H. Ichikawa, (2000) Ann. Chim. Sci. Mat., 25, 523.
[4] L. Pennander and C.-H. Anderson (1991), in Metal Matrix Composites – Processing, Microstructure and Properties, 12thRiso Int. Symp. On Materials Science, (N. Hansen et al. eds.) 575.
[5] Xiaochun, L., Yang, Y., & Weiss, D. (2013). Metallurgical Science and Tecnology, 26(2).
[6] R. Saha, E. Morris, N. Chawla, and S.M. Pickard (2000), J. Mater. Sci. Lett., 337–339.
[7] M. McLean, (1983), Directionally Solidified Materials for High Temperature Service, The Metals Soc., London.
[8] V.C. Michaud, (1993), in Fundamentals of Metal Matrix Composites, Butterworth-Heinneman, Stoneham, MA, pp. 3–22.
[9] Gotman, I., Koczak, M. J., & Shtessel, E. (1994). Mater. Sci. Eng. A, 187(2),189-199.
[10] Mozammil, S., Karloopia, J., Verma, R., & Jha, P. K. (2019). Journal of Alloys and Compounds, 793, 454-466.
[11] Dan, C. Y., Chen, Z., Ji, G., Zhong, S. H., Wu, Y., Brisset, F & Ji, V. (2017). Materials & Design, 130, 357-365.
[12] Xue, J., Zhang, L., Wang, J., & Wan, R. (2017). Materials transactions, 58(1), 33-38.
[13] Martin, J. H., Yahata, B. D., Hundley, J. M., Mayer, J. A., Schaedler, T. A., & Pollock, T. M. (2017). Nature, 549(7672), 365.
[14] Li, X. P., Ji, G., Chen, Z., Addad, A., Wu, Y., Wang, H. W., ... & Kruth, J. P. (2017). Acta Mater, 129, 183-193.
[15] Xi, L., Wang, P., Prashanth, K. G., Li, H., Prykhodko, H. V., Scudino, S., & Kaban, I. (2019). Journal of Alloys and Compounds, 786, 551-556.
[16] Xiao, Y. K., Bian, Z. Y., Wu, Y., Ji, G., Li, Y. Q., Li, M. J., ... & Wang, H. W. (2019). Journal of Alloys and Compounds, 798, 644 – 655.
[17] Wang, P., Gammer, C., Brenne, F., Niendorf, T., Eckert, J., & Scudino, S. (2018). Composites Part B: Engineering, 147, 162-168.
[18] W.H. Hunt, (1994), in Processing and Fabrication of Advanced Materials, The Minerals and Metal Materials Society, Warrendale, PA., pp. 663 683.
[19] J.E. Spowart, B. Maruyama, and D.B. Miracle (2001), Mater. Sci. Eng., A, 307, 51–66.
[20] J.J. Williams, G. Piotrowski, R. Saha, and N. Chawla (2002), Metall. Mater. Trans., 33A, 3861–3869.
[21] P.G. Partridge, and C.M. Ward-Close (1993), Int. Mater. Rev., 38, 1–24.
[22] Z.X. Guo, and B. Derby (1995), Prog. Mater. Sci., 39, 411–495.
[23] Munir, Z. A., Anselmi-Tamburini, U., & Ohyanagi, M. (2006). J. Mater. Sci, 41(3), 763-777.
[24] Firestein, K. L., Corthay, S., Steinman, A. E., Matveev, A. T., Kovalskii, A. M., Sukhorukova, I. V., ... & Shtansky, D. V. (2017). Mater. Sci. Eng. A, 681, 1-9.
[25] Yazdani, Z., Toroghinejad, M. R., Edris, H., & Ngan, A. H. W. (2018). Journal of Alloys and Compounds, 747, 217-226.
[26] Cao, X., Shi, Q., Liu, D., Feng, Z., Liu, Q., & Chen, G. (2018). Composites Part B: Engineering, 139, 97-105.
[27] M. Pfeifer, J.M. Rigsbee, and K.K. Chawla (1990) J. Mater. Sci., 25, 1563.
[28] C.M. Gabryel and A.D. McLeod (1991) Met. Trans, 23A, 1279.
[29] Zhang, X., Hu, T., Rufner, J. F., LaGrange, T. B., Campbell, G. H., Lavernia, E. J & van Benthem, K. (2015). Acta Mater, 95, 254-263.
[30] Guo, Baisong, et al. Carbon 135 (2018): 224-235.
[31] Balcı, Ö., Ağaoğulları, D., Gökçe, H., Öveçoğlu, M. L., & Somer, M. (2018). J. Alloys Compd., 757, 393-402.
[32] J.I. Eldridge and B.T. Ebihara (1994) J. Mater. Res., 9 1035.
[33] Y. Zhong, W. Hu, J. I. Eldridge, H. Chen, J. Song, and G. Gottstein (2008) Mater. Sci. Eng. A, 488, 372.
[34] N.C. Beck Tan, R.M. Aikin, Jr., and R.M. Briber (1994) Metall. Mater. Trans., 25A, 2461–2468.
[35] P.E. Krajewski, J.E. Allison, and J.W. Jones (1995) Metall. Mater. Trans., 26A, 3107–3118.
[36] V.V. Ganesh, and N. Chawla (2004) Metall. Mater. Trans., 35A, 53–62.
[37] B. Venkataraman, and G. Sundarajan (1996a) Acta Mater., 44, 451–460.
[38] G.S. Upadhyaya, (1998) Cemented Tungsten Carbides, Noyes Pub., Westwood, NJ.
[39] D.B. Miracle, (2001) in ASM Handbook – Composites, vol.21, 1043–1049, Materials Park, OH.
[40] A.J. Shakesheff, and G. Purdue (1998) Mater. Sci. Tech., 14, 851.
[41] W.H. Hunt, and D.B. Miracle (2001) in ASM Handbook – Composites, vol. 21, 1029–1032, Materials Park, OH.
[42] X. Deng, B.R. Patterson, K.K. Chawla, M.C. Koopmnan, C. Mackin, Z. Fang, G. Lockwood, and A. Griffo (2002) J. Mater. Sci. Lett., 21, 707–709.
[43] X. Deng, D.R.M. Schnell, and N. Chawla (2006) Mater. Sci. Eng., 426A, 314–322.