簡易檢索 / 詳目顯示

研究生: 洪郁修
Hung, Yu-Hsiu
論文名稱: DelAC:團隊對稱隨機賽局的多智能體增強式學習方法
DelAC: A Multi-agent Reinforcement Learning of Team-Symmetric Stochastic Games
指導教授: 李端興
LEE, DUAN-SHIN
口試委員: 張正尚
CHANG, CHENG-SHANG
易志偉
Yi, Chih-Wei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 27
中文關鍵詞: 對稱賽局團隊賽局增強式學習納許均衡行為評論
外文關鍵詞: symmetric games, team games, reinforcement learning, Nash equilibrium, actor-critic
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本文中,我們研究了具有兩個團隊的「團隊對稱賽局」。同一團隊內的玩家擁有共同的收益函數。我們證明了團隊對稱賽局總是存在一個團隊對稱的納許均衡。我們針對團隊對稱納許均衡,提出並解決了一個線性互補問題。我們還為團隊對稱賽局提出了一種基於行為評論(Actor-Critic)的多智能體增強式學習演算法。透過實驗模擬,我們證明了這種演算法的性能優於許多現有的演算法。程式碼已公布在https://github.com/Forcer0625/DelAC


    In this paper we study team-symmetric games with two teams. Players within the same team have common payoff functions. We show that team symmetric games always have a team-symmetric Nash equilibrium. We de velop and solve a linear complementarity problem of team-symmetric Nash equilibria. We propose an actor-critic based multi-agent reinforcement learning algorithm for team-symmetric games. Through simulations, we show that this multi-agent reinforcement learning algorithm performs much better than many existing algorithms. The code is available at https://github.com/Forcer0625/DelAC

    QR CODE