研究生: |
王梓賢 Wang, Tzu-Hsien. |
---|---|
論文名稱: |
Non-Hermitian SSH模型與拓樸不變量 Non-Hermitian SSH model with topological invariant |
指導教授: |
李瑞光
Lee, Ray-Kuang. |
口試委員: |
郭華丞
Kao, Watson. 張博堯 Chang, Po-Yao. 李政誼 Lee, Jeng-Yi. |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 39 |
中文關鍵詞: | 非厄米特 、SSH模型 、拓樸不變量 、貝里相位 |
外文關鍵詞: | Non-Hermitian, Su–Schrieffer–Heeger (SSH) model, topological invariant, Berry phase |
相關次數: | 點閱:71 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於拓樸材料具有拓樸保護性質,因為有保持不受環境干擾破壞的量子態,在量子電腦的應用上有發展的潛力。Su-Schrieffer-Heeger(SSH)模型是一個簡單的一維拓樸絕緣體模型,描述一維交錯排列分子上電子躍遷的模型。另外,在光學系統中,增益和損耗的非厄米特哈米頓是討論宇稱時間對稱性很好的例子。本論文結合一維拓樸絕緣體及增益損耗系統,從一維簡單的拓樸絕緣體模型,延伸至增益和損耗的非厄米特哈米頓系統。在此,一維非厄米特SSH模型,當能量為實數時,沒有破壞宇稱時間對稱性之下,我們可以得到貝里相位為0或是π。但是在能量為虛數時,破壞宇稱時間對稱性,在計算貝里相位積分內的函數不是連續的,要使用其他方法討論貝里相位。論文研究的結果,期望推廣到非厄米特光子系統的應用,同時拓展對拓樸絕緣體模型、非厄米特量子系統與光子系統領域的認識。
The Su-Schrieffer-Heeger (SSH) model perhaps is the simplest and the standard model for topological insulators. Parity–time symmetry is extending quantum theories to non-Hermitian Hamiltonians. This thesis is dedicated to discussing the topological property of the non-Hermitian SSH model. Using optical gain and loss is a way to prepare non-Hermitian eigenstates and hence in this non-Hermitian SSH model with additional gain and loss potential. There is a method of studying topological invariant in the non-Hermitian SSH model by use of a biorthogonal basis. We find that the Berry phase as a topological invariant in this non-Hermitian SSH model with parity-time symmetry. We suggest finding another method to get the Berry phase in this model with broken parity-time symmetry. We justify our analysis numerically and discuss relevant applications.
[1] Gupta, S., & Saxena, A. (2018). The role of topology in materials. Springer.
[2] The Nobel Prize in Physics 2016.(2016) NobelPrize.org. Nobel Media AB.
[3] Kosterlitz, J., & Thouless, D. (1973). Ordering, metastability and phase transitions in two-dimensional systems. Journal Of Physics C: Solid State Physics, 6(7), 1181-1203.
[4] Thouless, D., Kohmoto, M., Nightingale, M., & den Nijs, M. (1982). Quantized Hall Conductance in a Two-Dimensional Periodic Potential. Physical Review Letters, 49(6), 405-408.
[5] Haldane, F. (1988). Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the "Parity Anomaly". Physical Review Letters, 61(18), 2015-2018.
[6] Hasan, M., & Kane, C. (2010). Colloquium: Topological insulators. Reviews Of Modern Physics, 82(4), 3045-3067.
[7] Ando, Y. (2013). Topological Insulator Materials. Journal Of The Physical Society Of Japan, 82(10), 102001.
[8] Bernevig, B., & Hughes, T. (2013). Topological insulators and topological superconductors. Princeton University Press.
[9] Moore, J. (2010). The birth of topological insulators. Nature, 464(7286), 194-198.
[10] Wan, X., Turner, A., Vishwanath, A., & Savrasov, S. (2011). Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Physical Review B, 83(20).
[11] Popular information.(2016) NobelPrize.org. Nobel Media AB.
[12] Lu, L., Joannopoulos, J., & Soljačić, M. (2014). Topological photonics. Nature Photonics, 8(11), 821-829.
[13] Su, W., Schrieffer, J., & Heeger, A. (1979). Solitons in Polyacetylene. Phys. Rev. Lett.
[14] Su, W., Schrieffer, J., & Heeger, A. (1980). Soliton excitations in polyacetylene. Physical Review B, 22(4), 2099-2111.
[15] Jackiw, R., & Rebbi, C. (1976). Solitons with fermion number ½. Physical Review D, 13(12), 3398-3409.
[16] Heeger, A., Kivelson, S., Schrieffer, J., & Su, W. (1988). Solitons in conducting polymers. Reviews Of Modern Physics, 60(3), 781-850.
[17] Asbóth, J., Oroszlány, L., & Pályi, A. (2015). A short course on topological insulators. springer.
[18] Franz, M., & Molenkamp, L. (2013). Topological Insulators Contemporary Concepts of Condensed Matter Science (Volume 6). Elsevier.
[19] El-Ganainy, R., Makris, K., Khajavikhan, M., Musslimani, Z., Rotter, S., & Christodoulides, D. (2018). Non-Hermitian physics and PT symmetry. Nature Physics, 14(1), 11-19.
[20] Özdemir, Ş., Rotter, S., Nori, F., & Yang, L. (2019). Parity–time symmetry and exceptional points in photonics. Nature Materials, 18(8), 783-798. doi: 10.1038/s41563-019-0304-9
[21] Feng, L., El-Ganainy, R., & Ge, L. (2017). Non-Hermitian photonics based on parity–time symmetry. Nature Photonics, 11(12), 752-762.
[22] Zhao, H., Longhi, S., & Feng, L. (2015). Robust Light State by Quantum Phase Transition in Non-Hermitian Optical Materials. Scientific Reports, 5(1). doi: 10.1038/srep17022
[23] Berry, M. (1984). Quantal phase factors accompanying adiabatic changes. Proceedings Of The Royal Society Of London. A. Mathematical And Physical Sciences, 392(1802), 45-57.
[24] Xiao, D., Chang, M., & Niu, Q. (2010). Berry phase effects on electronic properties. Reviews Of Modern Physics, 82(3), 1959-2007.
[25] Zak, J. (1989). Berry’s phase for energy bands in solids. Physical Review Letters, 62(23), 2747-2750. doi: 10.1103/physrevlett.62.2747
[26] Atala, M., Aidelsburger, M., Barreiro, J., Abanin, D., Kitagawa, T., Demler, E., & Bloch, I. (2013). Direct measurement of the Zak phase in topological Bloch bands. Nature Physics, 9(12), 795-800.
[27] Brody, D. (2013). Biorthogonal quantum mechanics. Journal Of Physics A: Mathematical And Theoretical, 47(3), 035305.
[28] Kunst, F., Edvardsson, E., Budich, J., & Bergholtz, E. (2018). Biorthogonal Bulk-Boundary Correspondence in Non-Hermitian Systems. Physical Review Letters, 121(2).
[29] Lieu, S. (2018). Topological phases in the non-Hermitian Su-Schrieffer-Heeger model. Physical Review B, 97(4).
[30] Günther, U., & Samsonov, B. (2008). Naimark-Dilated PT-Symmetric Brachistochrone. Physical Review Letters, 101(23).
[31] Lee, Y., Liu, J., Chuang, Y., Hsieh, M., & Lee, R. (2015). Passive PT-symmetric couplers without complex optical potentials. Physical Review A, 92(5).