簡易檢索 / 詳目顯示

研究生: 林宏道
Hung-Tao Lin
論文名稱: 晶種層用於溶凝膠法SBT鐵電薄膜之研究
指導教授: 胡塵滌
Chen-Ti Hu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
中文關鍵詞: 晶種層溶凝膠法SBT鐵電薄膜
相關次數: 點閱:59下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文共分三個部分:第一個部分探討不同的黏著層包括鈦(Ti)及鉭(Ta)對於鉭酸鍶鉍(SBT)薄膜的微結構以及鐵電特性的影響。實驗後發現若是以Ti作為黏著層,沈積在上面的鉑(Pt)底電極會有較粗糙的顯微結構,且Ti原子會擴散至Pt底電極表面生成二次相,導致最後的SBT薄膜鐵電特性比較差。另一方面,以Ta為黏著層的SBT薄膜則是會有比較好的顯微結構以及鐵電特性。
    本文的第二個部分是延伸第一個部分的結論:由於黏著層原子的擴散導致薄膜顯微結構與鐵電特性的變化。為了更進一步探討擴散原子的影響,加入Ta晶種層(seeding layer)於Pt底電極之上SBT鐵電薄膜之下來模擬擴散原子所造成的影響。實驗結果顯示加入晶種層的厚度會影響之後微結構及鐵電特性的表現,某一定厚度的晶種層會具有最好的效果。

    本文最後一個部分會利用液態源霧化沈積系統(LSMCD)來沈積SBT薄膜,探討SBT鐵電薄膜厚度與鐵電性質之間的關係。在一定的退火溫度下,SBT薄膜厚度太小或太大都會影響結晶特性及鐵電特性,只有在特定範圍的厚度才具有最佳的結果,而且相較於溶凝膠(Sol-Gel)法,LSMCD沈積之SBT薄膜具有更佳的鐵電特性。


    目錄 第一章 緒論……………………………………………………..1 第二章 文獻回顧………………………………………………..3 2-1鐵電材料及其極化特性……………………………………3 2-1-1 鐵電材料簡介…………………………………………..3 2-1-2 極化機制……………………………………………….4 2-1-3 鐵電特性………………………………………………..5 2-2 鐵電薄膜之製作與發展……………………………………7 2-3 鐵電薄膜於記憶體元件上的應用…………………………8 2-4 溶凝膠法(Sol-Gel process)鍍膜………………………..…10 2-5 液態源霧化沈積法(LSMCD)鍍膜……………………..…14 2-6 SBT鐵電薄膜之相變化…………………………….……..15 2-7 鐵電薄膜文獻中有關晶種層的已有研究………………..15 2-7-1 PZT相關的研究………………………………………..15 2-7-2 SBT相關的研究……………………………………….17 第三章 實驗程序……………………………………………….26 3-1 基板之準備………………………………………………..26 3-1-1 擴散阻絕層及黏著層的製備………………………….26 3-1-2 白金底電極的製備…………………………………….27 3-2 晶種層的製備……………………………………………..28 3-3 SBT鐵電薄膜製備………………………………………...28 3-3-1 SBT溶液之TG/DTA分析…………………………….28 3-3-2 以溶凝膠法製備SBT薄膜……………………………29 3-3-3 以液態源霧化沈積法製備SBT薄膜…………………30 3-4 薄膜性質之量測分析……………………………………..31 3-4-1 電性量測……………………………………………….31 3-4-2 物性分析……………………………………………….33 第四章 結果與討論…………………………………………….44 4-1 鈦或鉭黏著層對於以溶凝膠法製備之鉭酸鍶鉍薄膜性質的影響……………………………………………………...44 4-1-1 實驗流程……………………………………………….44 4-1-2 Pt/Ti與Pt/Ta基板之特性分析…………………………45 4-1-3 鉭酸鍶鉍薄膜之結晶結構與表面形貌……………….46 4-1-4 鐵電特性……………………………………………….48 4-1-5 鉭與鈦原子向外擴散的影響………………………….50 4-1-6 結論…………………………………………………….52 4-2 Ta晶種層使用於溶凝膠法SBT鐵電薄膜………………..53 4-2-1 實驗流程……………………………………………….53 4-2-2 Ta晶種層對於SBT薄膜結晶的影響…………………54 4-2-3 Ta晶種層對於SBT薄膜表面形貌的影響…………….54 4-2-4 Ta晶種層對於SBT薄膜鐵電特性的影響……………55 4-2-5 不同厚度晶種層SBT薄膜之縱深成分分析…………56 4-2-6 電性分析……………………………………………….56 4-2-7 低溫退火下Ta晶種層對於SBT薄膜的影響………..57 4-2-8 結論…………………………………………………….58 4-3 液態源霧化沈積法(LSMCD)鍍製SBT薄膜…………….60 4-3-1 實驗流程……………………………………………….60 4-3-2 結晶特性……………………………………………….60 4-3-3 顯微結構……………………………………………….61 4-3-4 鐵電特性……………………………………………….61 4-3-5漏電流特性……………………………………………..62 4-3-6 液態源霧化沈積法與溶凝膠法旋鍍之SBT薄膜比 較 ……………………………………………………..62 4-3-7 結論…………………………………………………….63 第五章 結論………………………………………………………….96 參考文獻………………………………………………………...99

    參考文獻
    (1) 鄭晃忠,史德智, “極大型積體電路之鐵電材料”,電子月刊, 第五卷第六期, 1999年6月
    (2) 陳銘森, “鎳酸鑭電極對鋯鈦酸鉛溶凝膠製作與特性影響之研究” ,清華大學,博士論文,(1996)
    (3) Ismunandar and Brendan J. Kennedy, “Structure of ABi2Nb2O9(A=Sr,Ba): Refinement of Powder Neutron Diffraction Data” ,J.Solid State Chem.,126p135(1996)
    (4) A.J.Moulson and J.M.Herbert, “Electroceramics” Materials, Properties, Applications(1990)p52
    (5) 楊閔智, “溶凝膠法製作SrBi2Ta2O9鐵電薄膜研究” ,清華大學, 碩士論文 (2001)
    (6) 陳瀅如, 添加微細粉對鈦酸鉛鍍膜製程與特性之研究, 清華大學碩士論,1998
    (7) 陳三元, 強介電薄膜之液相化學法製作, 工業材料, 180, (1995)
    (8) 呂正傑 詹世雄, 鐵電記憶體簡介, 毫微米通訊第五卷第四期
    (9) 彭成鑑, 強介電陶瓷材料在動態隨機記憶體上的應用, 工業材料, 107, (1995)
    (10)吳大維、詹世雄 “液態原霧化沈積系統介紹” 毫微米通訊 第三卷第二期17
    (11)Jeong Soo Lee, Hyun Ja Kwon, S. J. Hyun, and T. W. Noh, “Structure characterization of the low-temperature phase in Sr-Bi-Ta-O films”, Appl. Phys. Lett. 74 (1999) pp.2690-2692
    (12)Mark A. Rodriguez, Timothy J. Boyle, Bernadette A. Hernandez, Catherine D. Buchheit, and Michael O. Eatough, “Formation of SrBi2Ta2O9 : PartⅡ. Evidence of a bismuth-deficient pyrochlore phase” J. Mater. Res. Vol.11 (1996) pp.2282-2287
    (13)Chung-Hsin Lu, Bu-Kuan FANG and Cheng-Yen WEN, “Structure Identification and Electrical Properties of the New Pyrochlore Phase in the Sr-Bi-Ta-Ti-O system” Jpn. J. Appl. Vol.39 (2000) pp.5573-5576
    (14)Ichiro KOIWA, Yukihisa OKADA, Juro MITA, Akira HASHIMOTO and Yoshihiro SAWADA, “Role of Excess Bi in SrBi2Ta2O9 Thin Film Prepared Using Chemical Liquid Deposition and Sol-Gel Method” Jpn. J. Appl. Phys. Vol.36 (1997) pp.5904-5907
    (15)Tetsuya OSAKA, Akira SAKAKIBARA, Tomonori SEKI, Sachiko ONO, Ichiro KOIWA and Akira HASHIMOTO, “Phase Transition in Ferroelectric SrBi2Ta2O9 Thin Films with Change of Heat-treatment Temperature” Jpn. J.Appl. Phys. Vol.37 (1998) pp.597-601
    (16)Timothy J. Boyle, Catherine D. Buchheit, Mark A. Rodriguez, Husam N. Al-Shareef, and Bernadette A. Hernandez, “Formation of SrBi2Ta2O9 : PartⅠ. Synthesis and characterization of a novel “sol-gel” solution for production of ferroelectric SrBi2Ta2O9 thin film” J. Mater. Res. Vol. 11 (1996) pp.2274-2281
    (17)K. C. Chen and J. D. Mackenzie, Mater. Res. Soc. Symp. Proc. 180, 663 (1990)
    (18) J. O. Olowolafe and R. B. Gregory, “Effects of anneal ambients and Pt thickness on Pt/Ti and Pt/Ti/TiN interfacial reactions” J. Appl. Phys. 73, 1764 (1998)
    (19) K. AOKI, Y. FUKUDA, K. NUMATA and A. NISHIMURA, “Effecs of Titanium Buffer Layer on Lead-Zirconate-Titanate Crystallization Process in Sol-Gel Deposition Technique” Jpn. J. Appl. Phys. 34, 192 (1995)
    (20)R. Bouregba, G. Poullian, B. Vilquin, and H. Murray, “Orientation controll of texture PZT thin films sputtered on silicon substrate with TiOx seeding” Mater. Res. Bull. 35, 1381 (2000)
    (21)P. Muralt, S. Scalese, N. Xanthopoulos, and L. Patthey, “Texture control of PbTiO3 and Pb(Zr,Ti)O3 thin films with TiO2 seeding” J. Appl. Phys. 83, 3835 (1998)
    (22)K. ISHIKAWA, K. SAKURA, D. Fu, S. YAMADA, H. SUZUKI and T. HAYASHI, “Effect of PbTiO3 Seeding on Growth of Sol-Gel-Derived Pb(Zr0.53Ti0.47)O3 Thin Film” Jpn. J. Appl. Phys. 37, 5128 (1998)
    (23)W.C.Shin, S.G.Yoon, “Improvement in ferroelectric properties of SrBi2Ta2O9 thin films with Bi2O3 buffer layers by liquid-delivery metalorganic chemical-vapor deposision”. Appl. Phys. Lett. 79 (2001) 1519
    (24)G.D.Hu, J.B.Xu, I.H.Wilson, W.Y.Cheung, and S.P.Wong, “Effects of a Bi4Ti3O12 buffer layer on SrBi2Ta2O9 thin films prepared by the metalorganic decomposition” Appl. Phys. Lett. 74 (1999) 3711
    (25)T.OSAKA, T.YOSHIE, T.HOSHIKA, I.KOIWA Y.SAWADA, and A.HASHIMOTO, “Control of Crystal Orientation of Ferroelectric SrBi2Ta2O9 Thin Films with Multi-Seeding Layers” Jpn. J. Appl. Phys. Vol. 39 (2000) 5476
    (26)汪建民, “熱分析”, 材料分析,2000,p556-563
    (27)H. N. Al-Shareef, K. D. Gifford, S. H. Rou, P. D. Hren, O. Auciello, and A. I. Kingon, Integrated Ferroelectrics 3, 321 (1993).
    (28)S. T. Kim, H. H. Kim, M. Y. Lee, and W. J. Lee, “Investigation of Pt/Ti Bottom Electrodes for Pb(Zr,Ti)O3 Films”, Jpn. J. Appl. Phps. Part 1 36, 294 (1997).
    (29)H. J. Nam, H. H. Kim, and W. J. Lee, “The Effects of the Preparation Conditions and Heat-Treatment Conditions of Pt/Ti/SiO2/Si Substrates on the Nucleation and Growth of Pb(Zr,Ti)O3 Films”, Jpn. J. Appl. Phps. Part 1 37, 3462 (1998).
    (30)H. J. Nam, D. K. Choi, and W. J. Lee, “Formation of hillocks in Pt/Ti electrodes and their effects on short phenomena of PZT films deposited by reactive sputtering” ,Thin Solid Films. 371, 264 (2000).
    (31)S. H. Kim, D. J. Kim, J. P. Maria, A. I. Kingon, S. K. Streiffer, J. Im, O. Auciello, and A. R. Krauss, “Influence of Pt heterostructure bottom electrodes on SrBi2Ta2O9 thin film properties”, Appl. Phys. Ltter. 76, 496 (2000).
    (32)N. J. Seong, C. H. Yang, W. C. Shin, and S. G. Yoon, “Oxide interfacial phases and the electrical properties of SrBi2Ta2O9 thin films prepared by plasma-enhanced metalorganic chemical vapor deposition”, Appl. Phys. Ltter. 72, 1374 (1998).
    (33)C. H. Lu, and B. K. Fang, “Secondary Phase formation and microstructure development in the interaction between SrBi2Ta2O9 films and Pt/Ti/SiO2/Si substrates.”,J. Mater. Res. 12, 2104 (1997).
    (34)C. H. Lu, B. K. Fang, and C. Y. Wen, “Structure Identification and Electrical Properties of the New Pyrochlore Phase in the Sr-Bi-Ta-Ti-O system.”, Jpn. J. Appl. Phys. Part 1 39, 5573 (2000).
    (35)K. Hholloway, P. M. Fryer, C. Cabral, Jr., J. M. E. Harper, P. J. Bailey, and K. H. Kelleher, “Tantalum as a diffusion barrier between copper and silicon: Failure mechanism and effect of nitrogen additions”, J. Appl. Phys. 71, 5433 (1992).
    (36)A. Grill, W. Kane, J. Viggiano, M. Brady, and R. Laibowitz, “Base electrodes for high dielectric constant oxide materials in silicon technology.”, J. Mater. Res., 7, 3260 (1992).
    (37)D. S. Yoon, H. K. Baik, S. M. Lee, S. I. Lee H. Ryu, and H. J. Lee, “Investigation of Pt/Ta diffusion barrier using hybrid conductive oxide(RuO2) for high dielectric applications.”, J. Vac. Sci. Technol. B, 16, 1137 (1998).
    (38)C. C. Leu, M. C. Yang, C. T. Hu, C. H. Chien, M. J. Yang, and T. Y. Huang, “Effects of tantalum adhesion layer on the properties of SrBi2Ta2O9 ferroelectric thin films”, Appl. Phys. Lett., 79, 3833 (2001).
    (39)K. Aoki, Y. Fukuda, K. Numata, A. Nishimura, “Effects og Titanium Buffer Layer on Lead-Zirconate-Titanate Crystallization Processes in Sol-Gel Deposition Technique.”, Jpn. J. Appl. Phys., Part 1 34, 192 (1995).
    (40)I. Koiwa, T. Kanehara, J. Mita, T. Iwabuchi, T. Osaka, S. Ono, and M. Maeda, “Crystallization of Sr0.7Bi2.3Ta2O9+α Thin Films by Chemical Liquid Deposition.”, Jpn. J. Appl. Phys. Part 1 35, 4946 (1996).
    (41)T. Osaka, A. Sakakibara, T. Seki, S. Ono, I. Koiwa, and A. Hashimoto, “Phase Transution in Ferroelectric SrBi2Ta2O9 Thin Films with Change og Heat-treatment Temperature.”, Jpn. J. Appl. Phys. Part 1 37, 597 (1998).
    (42)P. Tejedor, C. Ocal, E. Barrena, R. Jimenez, C. Alemany, and J. Mendiola, Appl. Surf. Sci. 175,759 (2001).
    (43)S. T. Tay, H. Jiang, C. H. A. Huan, A. T. S. Wee, and R. Liu,“Influence of annealing temperature on ferroelectric properties of SrBi2Ta2O9 thin films prepared by off-axis radio frequency magnetron sputtering”, J. Appl. Phys. 88, 5928 (2000).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE