簡易檢索 / 詳目顯示

研究生: 江亭瑩
Ting-Ying Jiang
論文名稱: 澱粉吸附區與配體交互作用之功能性分析(Functional Characterization of Interaction between Starch Binding Domain and Ligands)
Functional Characterization of Interaction between Starch Binding Domain and Ligands
指導教授: 張大慈
Margaret Dah-Tsyr Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 63
中文關鍵詞: 葡糖澱粉酶澱粉吸附區醣類吸附模組原子力顯微鏡
相關次數: 點閱:82下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 米根黴菌 (Rhizopus oryzae) 的葡糖澱粉酶 (glucoamylase、GA) 屬於一種醣類水解酶,其整體結構包含胺基端的澱粉吸附區 (starch-binding domain、RoSBD) 與羧基端的催化區。RoSBD隸屬於醣類吸附模組 (carbohydrate-binding module, CBM) 家族二十一,能與顆粒狀生澱粉結合。SBD的主要功能為促進配體與GA結合、增加催化區活化位置的配體濃度以提升酵素水解效率。近年來許多研究指出SBD能利用非水解的方式讓生澱粉配體的結構鬆弛,使之更容易讓催化區接近而提高酵素的催化活性。SBD與配體的結合主要靠芳香環胺基酸與醣類的六角環形成交互作用,以及極性胺基酸與多醣的羧基形成氫鍵結合。根據核磁共振與結晶繞射解析出的米根黴菌葡糖澱粉酶之澱粉結合區 (RoSBD) 三級結構,推測天門冬胺酸29、酪胺酸32、離胺酸34、色胺酸47、天門冬胺酸50、苯丙胺酸58、酪胺酸67、穀胺酸68、酪胺酸83、酪胺酸93、酪胺酸94、天門冬胺酸96和天門冬胺酸101可能為參與配體結合的重要胺基酸。本實驗室過去的研究中曾以單點突變、旋光儀分析蛋白質二級結構,並以定量配體結合試驗結檢視此B型CBM和多醣之間的疏水性作用力與氫鍵結合力。結果顯示芳香環與極性胺基酸與配體作用時扮演不同的角色,前者主要負責RoSBD與配體結合,後者則於澱粉結合後,促使澱粉支鏈鬆弛而暴露出更多的表面積,使得更多RoSBD得以與配體結合。為了證實RoSBD與澱粉結合後將讓配體產生結構的改變,本研究以原子力顯微鏡觀察RoSBD與澱粉醣 (amylose) 之間的作用。初步研究結果發現RoSBD與澱粉醣結合後會改變澱粉醣的形態,而單點突變重要胺基酸的RoSBD其改變澱粉醣型態的能力會明顯地減弱。由不同的單點突變RoSBD的觀察結果本論文首先提出RoSBD改變澱粉醣形態時,其可能經歷不同階段的反應模式。


    中文摘要 I Abstract II Acknowledgement IV Table of Contents V List of Figures VII List of Tables IX Abbreviations X Chapter 1 Introduction 1 1. 1 Starch and Glucoamylase 1 1. 2 Atomic force microscopy 2 1. 3 Research motivation 4 Chapter 2 Materials and Methods 10 2. 1 Enzymes, reagents and chemicals 10 2. 2 Microbial strains, plasmids and culture conditions 11 2. 3 Construction of plasmids 12 2. 4 Competent cell preparation and transformation of E. coli 14 2. 5 In situ PCR 15 2. 6 Mini-preparation of plasmid and DNA sequencing 15 2. 7 Expression of recombinant SBDs by E. coli 17 2. 8 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting 17 2. 9 Purification of recombinant SBDs and determination of protein concentration 18 2. 10 Samples preparation for atomic force microscopy and imaging procedures 19 Chapter 3 Results 21 3. 1 Expression and purification of recombinant RoSBD and AnSBD 21 3. 2 Visualisation of the complexes between amylose and RoSBD 23 3. 3 Visualizations of the complexes between amylose typeIII and RoSBD derivatives 24 3. 3. 1 Wild-type RoSBD and wild-type RoSBD with fusion tag 24 3. 3. 2 RoSBD-6xHis mutant with point mutation of aromatic residue 25 3. 3. 3 RoSBD-6xHis mutant with point mutation of polar residue 25 Chapter 4 Discussion 46 4. 1 Preparation of AFM samples 46 4. 2 Different contribution of aromatic and polar residues in amylose disruption 47 4. 3 Different conformational change of amylose in the presence of RoSBD 47 4. 4 Conservation of ligand binding residues in CBM21 members 48 4. 5 Visualization of the complexes of amylose/AnSBD and amylose/RoSBD 49 References 51 Appendix 56

    1. Buleon, A., Colonna, P., Planchot, V. & Ball, S. (1998). Starch granules: structure and biosynthesis. Int J Biol Macromol 23, 85-112.
    2. Ridout, M. J., Parker, M. L., Hedley, C. L., Bogracheva, T. Y. & Morris, V. J. (2004). Atomic force microscopy of pea starch: origins of image contrast. Biomacromolecules 5, 1519-27.
    3. Imberty, A., Chanzy, H., Perez, S., Buleon, A. & Tran, V. (1988). The double-helical nature of the crystalline part of A-starch. J Mol Biol 201, 365-78.
    4. Parker, R. & Ring, S. G. (2001). Aspects of the Physical Chemistry of Starch Journal of Cereal Science 34, 1-17
    5. Coutinho, P. M. & Reilly, P. J. (1997). Glucoamylase structural, functional, and evolutionary relationships. Proteins 29, 334-47.
    6. Sauer, J., Sigurskjold, B. W., Christensen, U., Frandsen, T. P., Mirgorodskaya, E., Harrison, M., Roepstorff, P. & Svensson, B. (2000). Glucoamylase: structure/function relationships, and protein engineering. Biochim Biophys Acta 1543, 275-293.
    7. Hiromi, K., Hamauzu, Z. I., Takahashi, K. & Ono, S. (1966). Kinetic studies on gluc-amylase. II. Competition between two types of substrate having alpha-1,4 and alpha-1,6 glucosidic linkage. J Biochem 59, 411-8.
    8. Sorimachi, K., Le Gal-Coeffet, M. F., Williamson, G., Archer, D. B. & Williamson, M. P. (1997). Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to beta-cyclodextrin. Structure 5, 647-61.
    9. Reilly, P. J. (1999). Protein Engineering of Glucoamylase to Improve Industrial Performance - A Review Starch - Stärke 51, 269-74.
    10. Frandsen, T. P., Fierobe, H. P. & Svensson, B. (1999). Engineering specificity and stability in glucoamylase from Aspergillus
    niger in protein engineering in industrial biotechnology. (Alberghin, L., Ed.), Amsterdam7 Harwood Academic.
    11. Henrissat, B. (1991). A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280 ( Pt 2), 309-16.
    12. Southall, S. M., Simpson, P. J., Gilbert, H. J., Williamson, G. & Williamson, M. P. (1999). The starch-binding domain from glucoamylase disrupts the structure of starch. FEBS Lett 447, 58-60.
    13. Hayashida, S., N.K., Kanlayakrit, W. & Teramoto, Y. (1989). Characteristics and Function of Raw-starch-affinity Site on Aspergillus awamori var. kawachi Glucoamylase I Molecule. Agricultural and Biological Chemistry 53, 143-149.
    14. Ashikari, T., Nakamura, N., Tanaka, Y., Kiuchi, N., Shibano, Y., Tanaka, T., Amachi, T. & Yoshizumi, H. (1986). Rhizopus Raw-Starch-Degrading Glucoamylase: Its Cloning and Expression in Yeast. Agricultural and Biological Chemistry 50, 957-964.
    15. Hall, J., Black, G. W., Ferreira, L. M., Millward-Sadler, S. J., Ali, B. R., Hazlewood, G. P. & Gilbert, H. J. (1995). The non-catalytic cellulose-binding domain of a novel cellulase from Pseudomonas fluorescens subsp. cellulosa is important for the efficient hydrolysis of Avicel. Biochem J 309 ( Pt 3), 749-56.
    16. Charnock, S. J., Bolam, D. N., Turkenburg, J. P., Gilbert, H. J., Ferreira, L. M., Davies, G. J. & Fontes, C. M. (2000). The X6 "thermostabilizing" domains of xylanases are carbohydrate-binding modules: structure and biochemistry of the Clostridium thermocellum X6b domain. Biochemistry 39, 5013-21.
    17. Ali, M. K., Hayashi, H., Karita, S., Goto, M., Kimura, T., Sakka, K. & Ohmiya, K. (2001). Importance of the carbohydrate-binding module of Clostridium stercorarium Xyn10B to xylan hydrolysis. Biosci Biotechnol Biochem 65, 41-7.
    18. Bui, D. M., Kunze, I., Förster1, S., Wartmann, T., Horstmann, C., Manteuffel, R. & Kunze, G. (1996). Cloning and expression of an Arxula adeninivorans glucoamylase gene in Saccharomyces cerevisiae Applied Microbiology and Biotechnology 44, 610-619.
    19. Houghton-Larsen, J. & Pedersen, P. A. (2003). Cloning and characterisation of a glucoamylase gene (GlaM) from the dimorphic zygomycete Mucor circinelloides. Appl Microbiol Biotechnol 62, 210-7.
    20. Coutinho, P. M. & Henrissat, B. (1999). The modular structure of cellulases and other carbohydrate-active enzymes: an intergrated database approach. In "Genetics, Biochemistry and Ecology of Cellulose Degradation". (Ohmiya, K., Hayashi, K., Sakka, K., Kobayashi, Y., Karita, S. & Kimura, T., Eds.), Uni Publishers Co., Tokyo.
    21. Detail information about CBMs. http://www.cazy.org/.
    22. Vansteenkiste, S. O., Davies, M. C., Roberts, C. J., Tendler, S. J. B. & Williams, P. M. (1998). Scanning probe microscopy of biomedical interfaces Progress in Surface Science 57, 95-136(42).
    23. Vesenka, J., Mosher, C., Schaus, S., Ambrosio, L. & Henderson, E. (1995). Combining optical and atomic force microscopy for life sciences research. Biotechniques 19, 240-8, 849, 852-3.
    24. Hansma, P. K., Elings, V. B., Marti, O. & Bracker, C. E. (1988). Scanning tunneling microscopy and atomic force microscopy: application to biology and technology. Science 242, 209-16.
    25. Ruger, D. & Hansma, P. K. (1990). Atomic force microscopy. Physics. Today 43, 23-30.
    26. Shakesheff, K. M., Davies, M. C., Roberts, C. J., Tendler, S. J. & Williams, P. M. (1996). The role of scanning probe microscopy in drug delivery research. Crit Rev Ther Drug Carrier Syst 13, 225-56.
    27. Shao, Z., Mou, J., Czajkowsky, D. M., Yang, J. & Jian-Yang, Y. (1996). Biological atomic force microscopy: what is achieved and what is needed. Advances in physics 45, 1-86.
    28. Binnig, G., Quate, C. F. & Gerber, C. H. (1986). Atomic Force Microscope Phys. Rev. Lett. 56, 930-933.
    29. Drake, B., Prater, C. B., Weisenhorn, A. L., Gould, S. A., Albrecht, T. R., Quate, C. F., Cannell, D. S., Hansma, H. G. & Hansma, P. K. (1989). Imaging crystals, polymers, and processes in water with the atomic force microscope. Science 243, 1586-9.
    30. Allison, D. P., Kerper, P. S., Doktycz, M. J., Thundat, T., Modrich, P., Larimer, F. W., Johnson, D. K., Hoyt, P. R., Mucenski, M. L. & Warmack, R. J. (1997). Mapping individual cosmid DNAs by direct AFM imaging. Genomics 41, 379-84.
    31. Radmacher, M., Fritz, M., Hansma, H. G. & Hansma, P. K. (1994). Direct observation of enzyme activity with the atomic force microscope. Science 265, 1577-9.
    32. Muller, D. J., Baumeister, W. & Engel, A. (1996). Conformational change of the hexagonally packed intermediate layer of Deinococcus radiodurans monitored by atomic force microscopy. J Bacteriol 178, 3025-30.
    33. Lal, R. & John, S. A. (1994). Biological applications of atomic force microscopy. Am J Physiol 266, C1-21.
    34. Czajkowsky, D. M., Iwamoto, H. & Shao, Z. (2000). Atomic force microscopy in structural biology: from the subcellular to the submolecular. J Electron Microsc (Tokyo) 49, 395-406.
    35. Kirby, A. R., Gunning, A. P. & Morris, V. J. (1996). Imaging polysaccharides by atomic force microscopy. Biopolymers 38, 355-66.
    36. Baker, A. A., Miles, M. J. & Helbert, W. (2001). Internal structure of the starch granule revealed by AFM. Carbohydr Res 330, 249-56.
    37. Round, A. N., MacDougall, A. J., Ring, S. G. & Morris, V. J. (1997). Unexpected branching in pectins observed by atomic force microscopy. Carbohydr Res 303, 251-253.
    38. Baker, A. A., Helbert, W., Sugiyama, J. & Miles, M. J. (2000). New insight into cellulose structure by atomic force microscopy shows the i(alpha) crystal phase at near-atomic resolution. Biophys J 79, 1139-45.
    39. Ridout, M. J., Brownsey, G. J., Gunning, A. P. & Morris, V. J. (1998). Characterisation of the polysaccharide produced by Acetobacter xylinum strain CR1/4 by light scattering and atomic force microscopy. Int J Biol Macromol 23, 287-93.
    40. Kirby, A. R., Gunning, A. P., Morris, V. J. & Ridout, M. J. (1995). Observation of the helical structure of the bacterial polysaccharide acetan by atomic force microscopy. Biophys J 68, 360-3.
    41. McIntire, T. M. & Brant, D. A. (1998). Observations of the (1-3)-B-D-Glucan Linear Triple Helix to Macrocycle Interconversion Using Noncontact Atomic Force Microscopy J. Am. Chem. Soc. 120, 6909 -6919.
    42. McIntire, T. M. & Brant, D. A. (1997). Imaging of individual biopolymers and supramolecular assemblies using noncontact atomic force microscopy. Biopolymers 42, 133-46.
    43. Kirby, A. R., Gunning, A. P., Waldron, K. W., Morris, V. J. & Ng, A. (1996). Visualization of plant cell walls by atomic force microscopy. Biophys J 70, 1138-43.
    44. Gunning, A. P., Cairns, P., Round, A. N., Bixler, H. J., Kirby, A. R. & Morris, V. J. (1998). Characterising semi-refined iota carrageenan networks by atomic force microscopy. carbohydr Polym 36, 67-72.
    45. Gunning, A. P., Kirby, A. R., Ridout, M. J., Brownsey, G. J. & Morris, V. J. (1996). Investigation of gellan networks and gels by atomic force microscopy. Macromolecules 29, 6791-6796.
    46. Giardina, T., Gunning, A. P., Juge, N., Faulds, C. B., Furniss, C. S., Svensson, B., Morris, V. J. & Williamson, G. (2001). Both binding sites of the starch-binding domain of Aspergillus niger glucoamylase are essential for inducing a conformational change in amylose. J Mol Biol 313, 1149-59.
    47. Din, N., Damude, H. G., Gilkes, N. R., Miller, R. C., Jr., Warren, R. A. & Kilburn, D. G. (1994). C1-Cx revisited: intramolecular synergism in a cellulase. Proc Natl Acad Sci U S A 91, 11383-7.
    48. Morris, V. J., Gunning, A. P., Faulds, C. B., Williamson, G. & Svensson, B. (2005). AFM Images of Complexes between Amylose and Aspergillus niger Glucoamylase Mutants, Native and Mutant Starch Binding Domains: A Model for the Action of Glucoamylase. STARCH - STÄRKE 57 1 - 7.
    49. Guan, L., Hu, Y. & Kaback, H. R. (2003). Aromatic stacking in the sugar binding site of the lactose permease. Biochemistry 42, 1377-82.
    50. Ponyi, T., Szabo, L., Nagy, T., Orosz, L., Simpson, P. J., Williamson, M. P. & Gilbert, H. J. (2000). Trp22, Trp24, and Tyr8 play a pivotal role in the binding of the family 10 cellulose-binding module from Pseudomonas xylanase A to insoluble ligands. Biochemistry 39, 985-91.
    51. Pell, G., Williamson, M. P., Walters, C., Du, H., Gilbert, H. J. & Bolam, D. N. (2003). Importance of hydrophobic and polar residues in ligand binding in the family 15 carbohydrate-binding module from Cellvibrio japonicus Xyn10C. Biochemistry 42, 9316-23.
    52. Xie, H., Bolam, D. N., Nagy, T., Szabo, L., Cooper, A., Simpson, P. J., Lakey, J. H., Williamson, M. P. & Gilbert, H. J. (2001). Role of hydrogen bonding in the interaction between a xylan binding module and xylan. Biochemistry 40, 5700-7.
    53. Chou, W. I., Pai, T. W., Liu, S. H., Hsiung, B. K. & Chang, M. D. (2006). The family 21 carbohydrate-binding module of glucoamylase from Rhizopus oryzae consists of two sites playing distinct roles in ligand binding. Biochem J 396, 469-77.
    54. Liu, Y. N., Lai, Y. T., Chou, W. I., Chang, M. D. & Lyu, P. C. (2007). Solution structure of family 21 carbohydrate-binding module from Rhizopus oryzae glucoamylase. Biochem J. 403 21-30.
    55. HMandel, M. & Higa, A. (1970). Calcium-dependent bacteriophage DNA infection. J Mol Biol 53, 159-62.
    56. Paldi, T., Levy, I. & Shoseyov, O. (2003). Glucoamylase starch-binding domain of Aspergillus niger B1: molecular cloning and functional characterization. Biochem J 372, 905-10.
    57. Laemmli, U. K. (1970). Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 Nature 227, 680 - 685.
    58. McIntire, T. M. & Brant, D. A. (1999). Imaging of carrageenan macrocycles and amylose using noncontact atomic force microscopy. Int J Biol Macromol 26, 303-10.
    59. BLAST. http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastHome.
    60. Machovic, M., Svensson, B., MacGregor, E. A. & Janecek, S. (2005). A new clan of CBM families based on bioinformatics of starch-binding domains from families CBM20 and CBM21. Febs J 272, 5497-513.
    61. Machovic, M. & Janecek, S. (2006). Starch-binding domains in the post-genome era. Cell Mol Life Sci 63, 2710-24.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE