研究生: |
趙婉芝 |
---|---|
論文名稱: |
應用肺音訊號與分類技術之智慧型聽診器 An Intelligent Stethoscope for Classification of Lung Sound Signals |
指導教授: | 白明憲 |
口試委員: |
洪健中
杜佳穎 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 55 |
中文關鍵詞: | 肺音訊號 、訊號分離 、特徵擷取 、分類 |
外文關鍵詞: | lung sound signal, signal separation, feature extraction, classification |
相關次數: | 點閱:77 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文乃應用聲音訊號與影像特徵分類技術分析於不同病徵之肺部疾病診斷系統。
傳統上,病患疾病看診的過程中,醫護人員憑藉醫療儀器所檢查的結果,診斷病患疾病,大多數仍仰賴醫護人員的經驗進行診斷。隨著科技生活的進步,本研究旨在以智慧型分類技術來建構一套運用在肺音疾病診斷分類之智慧型聽診器系統,以期多方確認病患肺部病徵,協助醫護人員更加正確判斷病患肺部疾病,降低誤診的機率。
在進行診斷分類之前,整合諧波/撞擊聲分離(Harmonic/Percussive Sound Separation)技術,分離各個病徵頻譜圖上的諧波(水平)方向和撞擊(垂直)方向,進一步擷取出一些時間域和頻率域中的聲音訊號與影像特徵。應用特徵選取(Feature Selection)篩選出較具影響力之特徵,並以此執行分類。透過最近鄰居分類法(KNNC)、支持向量機(SVM)和隱藏馬可夫模型(HMM),來對不同病徵之肺部疾病進行分類,在訓練分類器的階段中,可透過機器學習對訓練音訊建立其特徵空間模型,而在接下來的測試階段,可計算測試音訊的特徵來與訓練音訊之特徵空間模型進行比對。在分類的實驗結果中顯示了本聽診器系統對於各種肺病音訊的自動分類最好的準確率超過九成。
An intelligent stethoscope system that makes use of feature extraction and classification of sound signals for lung conditions is presented in this thesis. First, the method of harmonic/percussive sound separation (HPSS) separate a monaural lung sound signal into harmonic and percussive components and then calculate the features on separated signals which is helpful to classification. Each separated component, the acoustic features are extracted by using Mel-scale frequency cepstral coefficient (MFCC). Then, audio signals are converted into spectrograms to extract texture features from time and frequency image features which are then used for lung conditions prior to classification. The texture features are based on gray level co-occurrence matrix (GLCM) and local binary patterns (LBP) which have been proved to be a promising method for image classification research. In order to find the most discriminative features the method are used with sequential forward selection (SFS) and k-nearest-neighbor classifier (KNNC) as the classifier. Finally, based on these features, three classification approaches are employed, including k-nearest-neighbor classifier (KNNC), support vector machine (SVM), and hidden markov models (HMM). The experimental results reveal that the performance of features with above technique is satisfactory, for lung conditions diagnosis.
1.L. J. Hadjileontiadis, Lung sounds – an advanced signal processing perspective, (Morgan & Claypool, 2009), pp.61-81.
2.H. Polat and I. Guler, “A simple computer-based measurement and analysis system of pulmonary auscultation sounds,” J. Medical Systems, vol. 28, pp. 665-672 (2004).
3.K. Anderson, Y. Qiu, A. Whittaker, and M. Lucas,” Breath sounds, asthma, and the mobile phone,” The Lancet, vol. 358, pp. 1343-1344 (2001).
4.T. Rosqvist et al, “Toolkit for lung sound analysis,” Med. & Biol, Eng. & Comput, vol. 33, pp. 190-195 (1995).
5.C. Ahlstrom, O. Liljefeldt, O. Hult, and P. Ask, “Heat sound cancellation from lung sound recordings using recurrence time statistics and nonlinear prediction,” IEEE Signal Process, Lett., vol. 12, No.12, pp. 812-815(2005).
6.Z. Moussavi, Fundamentals of respiratory sounds and analysis, (Morgan & Claypol, 2007), pp.35-68.
7.M. Kompis, H. Pasterkamp, and G. Wodicka, “Acoustic imaging of the human chest,” Chest, vol. 120, pp. 1309-1321 (2001).
8.R. Murphy, “Computerized multichannel lung sound analysis,” IEEE Engineering in Medicine and Biology Magazine, vol. 26, pp.16-19 (2007).
9.I. Guler, H. Polat, and U. Ergun, “Combining neural network and genetic algorithm for prediction of lung sounds,” J. Med. Sys, vol. 29, pp.217-231 (2005).
10.A. Kandaswamy, C.S. Kumar, R. P. Ramanathan, S. Jayaraman, and N. Malmurugan, “Neural classification of lung sounds using wavelet coefficients,” Comput. Biol. Med, vol. 34, pp. 523-537 (2004).
11.N. Ono, K. Miyamoto, H. Kameoka, and S. Sagayama, “A real-time equalizer of harmonic and percussive components in music signals,” Proc. Int. Symp. Music Inf. Retrieval (ISMIR), pp. 139-144 (Philadelphia, 2008).
12.H. Rump, S. Miyabe, E. Tsunoo, N. Ono, and S. Sagama, “Autoregressive MFCC models for genre classification improved by harmonic-percussion separation,” Proc. Int. Symp. Music Inf. Retrieval (ISMIR), pp. 87-92 (Utrecht, Netherlands, 2010).
13.Y. Ueda, Y. Uchiyama, T. Nishimoto, N. Ono, and S. Sagayama,“HMM-based approach for automatic chord detection using refined acoustic features,” Proc. 35nd IEEE Int. Conf. Acoustics, Speech, Signal Processing (ICASSP), pp. 5518-5521 (Dallas, Texas, U.S.A, 2010).
14.E. Tsunoo, N. Ono, and S. Sagayama, “Rhythm map: Extraction of unit rhythmic patterns and analysis of rhythmic structure from music acoustic signals,” Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing (ICASSP), pp. 185-188 (Taipei, Taiwan, 2009).
15.B. Logan, “Mel frequency cepstral coefficients for music modeling,” Proc. Int. Symp. Music Information Retrieval (ISMIR), (Plymouth, Massachusetts, USA 2000).
16.R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural features for image classification”, IEEE Trans. On Systems, Man and Cybernetics, SMC-3, No.6, pp. 610-621 (November 1973).
17.T. Ojala, M. Pietikäinen and T. Mäenpää, “Multiresolution gray-scale and rotation invariant texture classification with local binary patterns,” IEEE Trans. On Pattern Analysis and Machine Intelligence, vol. 24, pp. 971-987 (2002).
18.M. Wu, Z. Chen, J.R. Jang, and J. Ren, “Combining visual and acoustic features for music genre classification,” 10th International Conference on Machine Learning and Applications, pp. 124–129 (Honolulu, Hawaii, 2011).
19.D. Zongker and A. Jain, “Algorithms for feature selection: an evaluation,” Proc. The 13th International Conference on Pattern Recognition, (Vienna, Austria, August, 1996)
20.T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE Trans. Information Theory, vol. 13, No. 1, pp. 21-27 (1967).
21.U. Fayyad, “A tutorial on support vector machines for pattern recognition,” Bell Laboratories, Lucent Technologies (1998).
22.L. Rabiner, “A tutorial on Hidden Markov Models and selected applications in Speech Recognition,” Proceedings of the IEEE, vol. 77, No. 2, pp. 257-286 (1989).
23.M. R. Bai and M. C. Chen, “Intelligent pre-processing and classification of audio signals”, Audio Engineering Society, vol.55, pp. 372-384 (2007).
24.L.R. Rabiner and B.H, Juang, Fundamentals of speech recognition, Englewood Cliffs, Prentice-Hall (1993).
25.A. Baraldi and F. Parmiggiani, “An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters”, IEEE Trans. On Geoscience and Remote Sensing, vol. 33, No. 2, pp. 293-304 (1995).
26.M. Hall-Beyer, “The GLCM tutorial home page”, Version: 2.10, available at http://www.fp.ucalgary.ca/mhallbey/tutorial.htm (Feb. 2007).
27.G. Heusch, Y. Rodriguez, and S. Marcel, “Local Binary Patterns as an Image Preprocessing for Face Authentication,” Proc. 7th International Conf. Automatic Face and Gesture Recognition (Southampton, UK, 2006).
28.M. A. Tahir, A. Bouridane, and F. Kurugollu, “Simultaneous feature selection and feature weighting using hybrid tabu search/k-nearest neighbor classifier,” Pattern Recognition Letters, vol. 28, pp. 438-446 (2007).
29.O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, “Choosing multiple parameters for support vector machines”, Machine Learning, vol. 46, pp. 131–159 (2002).