研究生: |
李培灯 Pei-Deng Li |
---|---|
論文名稱: |
研究動態幾何下的聯動桿裝置 Study Linkage in Dynamic Geometry |
指導教授: |
全任重
Jen-Chung Chuan |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 英文 |
論文頁數: | 34 |
中文關鍵詞: | 聯動桿 |
外文關鍵詞: | linkage |
相關次數: | 點閱:65 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在後十九世紀,幾何上最顯著的問題為找尋聯動桿來畫直線.最後終於
由法國軍官Peaucellier(1832~1913)於1864年找出答案(稱為Peaucellier Cell).Peaucellier Cell的理論概念為:相對於一圓
圓心的反點為一直線.於是以聯桿為主題的幾何變得很受幾何學家
們歡迎,因而產生許多製作其他特殊曲線的聯桿.
本篇論文介紹如何用Cabri Geometry Ⅱ 設計聯桿,總共分為五個章節.第一節介紹定義與預備知識.第二節介紹一廣義的聯桿定理.第
三節與第四節各介紹一些基本的聯桿(Peaucellier,Hart's,and Kempe's Cell),與一些性質.最後一節則舉例用聯桿製圖.
此外,我將論文製作為網頁,網址為:
http:// apollonius math nthu.edu.tw/d2/g913259web
任何人都能在此看到我進一步的研究成果.
An outstanding geometrical problem of the least half of
the nineteenth century was to discover a linkage mechanism
for drawing a straight line. In 1864, a solution
(Peaucellier Cell) was finally found by a French army
officer Peaucellier (1832~1913). The Peaucellier Cell was
based upon the fact that the inverse of a circle through the center of inversion is a straight line. The subject of linkages became quite fashionable among geometer, and many linkages were found for constructing special curves.
This paper presents the design of linkages under Cabri
Geometry Ⅱ, interactive dynamic software of geometry. It
is divided into five sections. The first section is to introduce definition and preliminary. The second section is about the general theorem of linkages. The third and fourth sections are to introduce some basic linkages (Peaucellier, Hart's, and Kempe's Cell), and some properties for linkage, respectively. The last section is the drawing of curves with linkages.
Further, I also put the content of this paper on this website:
http:// apollonius math nthu.edu.tw/d2/g913259web
Here anyone can see my achievement easily and the
application of dynamic geometry.
Robert C. Yates: A Handbook on Curves and Their Properties
Robert C. Yates: Geometrical Tools 1949
Robert C. Yates: An Ellipsograph National Mathematics Magazine, Volumn12, Issue5 (Feb., 1938), 213-215.
Robert C. Yates: A Note on the 3-BarsCurve National Mathematics Magazine, Volumn1, Volumn12, Issue5 (Feb., 1938), 213-215.
Robert C. Yates: Line Motion and Trisection National Mathematics Magazine, Volumn13, Issue2 (Feb., 1938), 63-66.
Robert C. Yates: A trisector National Mathematics Magazine, Volumn12, Issue7 (Apr., 1938), 323-324.
Robert C. Yates: The Trisection Problem National Mathematics Magazine, Volumn15 (Mar., 1941), 278-293.
Dickson H. Leavens: Linkages American Mathematical Monthly, Volumn22, Issue10 (Dec., 1915) 330-334.
A. B. Kempe: On a General Method of Producing Exact Rectillinear Motion by Linkwork Proceedings of the Royal Society of London, Volume 23(1874-1875).
Wm. Woolsey Johnson: The Peaucellier Machine and Other Linkages The Analyst, Volumn2, Issue2 (Mar, 1875), 41-45.
W. W. Johnson Recent: Results in the Study of Linkages The Analyst, Volumn13, Issue3 (May, 1876), 70-74.
W. W. Johnson Recent: Results in the Study of Linkages [Continued] The Analyst, Volumn13, Issue3 (May, 1876), 70-74.
John J. Quinn: A Linkage for describing the Conic Sections by Continuous Motion American Mathematical Monthly, Volume11, Issue1 (Jan., 1904), 12-13.
John J. Quinn: A new linkage for describing a straight line by continuous motion American Mathematical Monthly, Volume16, Issue1 (Jan., 1909), 1.
John J. Quinn: A linkage for the Kinematic Description of a Cissoid American Mathematical Monthly, Volume13, Issue3 (Mar., 1906), 57.
John J. Quinn: On Kinematics Geometry. --A New Inversor American Mathematical Monthly, Volumn12, Issue5 (May, 1905), 105-106.
F. C. Morley The Three-Bar Curve American Mathematical Monthly, Volumn31, Issue2 (Feb., 1924), 71-77.
Brian Bolt (李瑾譯): 數學遊樂園之四兩撥千金 牛頓出版社 2002.8.30.
Courant 數學導論(吳定遠譯): 水牛出版社1992.3.10.
Howard Eves: A SURVEY OF GEOMETRY, Volumn1, 1963.