簡易檢索 / 詳目顯示

研究生: 溫景發
Jiing-Fa, Wen
論文名稱: 利用同步輻射光電子散射研究超薄鎳矽界面的相變化
A synchrotron radiation photoemission study of phase transition at the ultrathin Ni/Si(100) interface
指導教授: 黃振昌
Jenn-Chang, Hwang
皮敦文
Tun-Wen, Pi
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2004
畢業學年度: 93
語文別: 英文
論文頁數: 120
中文關鍵詞: 同步輻射光電子散射相變化
相關次數: 點閱:74下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文是利用同步輻射光源量測高解析光電子能譜,研究在超高真空環境下,不同厚度的鎳薄膜在矽(100)表面上的界面反應以及相變化。我們發現矽表面與吸附物間的反應並非只發生在最外層的矽原子,而是最外三層的矽表面原子皆會與吸附物反應。
    鎳原子與矽(100)表面的初期反應中,能帶彎曲(band bending)與鎳原子佔據在矽原子間隙的位置有密切關係;當鎳厚度在0.0375 ML以下時,鎳原子佔據在矽的第一下表面層(1st subsurface)的”adamantane”位置,相當於NiSi2鍵結,此時的能帶彎曲達到最大值0.16 eV,當鎳厚度超過0.0375 ML,鎳原子開始佔據在雙原子(dimer)鍵結列上,當鎳厚度到達1 ML時,能帶彎曲變小到0.04eV。
    當鎳厚度在 ML時,三種非晶形(amorphous)的NiSi,NiSi及Ni2Si鍵結同時存在,當鎳厚度在 ML以上,在界面形成一非晶形的鎳矽混合層,此界面層有三種非晶形NiSi2, NiSi以及Ni2Si相,當鎳厚度到達 ML時,有新的一種鎳矽化合物形成,成長模式也從layer-by-layer-like轉換成island growth,整個NiSi(100)的成長模式稱為Stranki-Krastanov growth mode。
    當將7 ML的鎳矽薄膜進行退火實驗(annealing),四種不同的鎳矽化物將同時存在於400 oC ~700 oC的退火溫度,此時主要的鎳矽化合物是poly-NiSi,當退火溫度達到800 oC,epi-NiSi2將成為主要的鎳矽化合物。


    High resolution synchrotron radiation photoemission has been used to investigate the interfacial reaction and phase formation at the ultra thin Ni/Si(100)-2x1 interface under ultrahigh vacuum. The curve-fit analysis of the Si 2p core-level spectra, based on the concept of inelastic mean-free-path, indicates that the interaction between adsorbates and Si(100)-2x1 reaches down to the third top layer.
    At Ni coverage less than 0.0375 ML, Ni atoms prefer to occupy the adamantane sites on the first subsurface layer, equivalent to form a NiSi2 bonding environment. The band bending has its maximum value of 0.16 eV. As Ni coverage is higher than 0.0375, Ni atoms begin to occupy the Pedestal sites on the dimmer rows. The band bending shifts decrease from 0.16 to 0.04 eV at 1 ML Ni coverage.
    Three amorphous NixSiy bonding environments, a-NiSi2, a-NiSi, and a-Ni2Si coexist at 1ML Ni coverage. As Ni coverage increases, a Ni-silicides mixed layer exists at the Ni/Si(100) interface. The amorphous mixed layer consists of a-NiSi2, a-NiSi, and a-Ni2Si. When Ni coverage reaches 7 ML, a new Ni-silicide start to form and the growth mode also switches from layer-by-layer-like to island growth. The whole growth mode at the Ni/Si(100) interface is thus treated as a modified Stranski-Krastanov type.
    Upon annealing a 7 ML Ni/Si(100) interface, four stable polycrystalline NixSiy alloys coexist at temperatures ranging from 400 to 700 oC, and the dominant phase is poly-NiSi. At 800 oC, epi-NiSi2 becomes dominant phase.

    Contents ABSTRACT(Chinese)…………………………………………………….i ABSTRACT(English)……………………………………………………………ii ACKNOWLEDGEMENT(Chinese)…………………………………………..iv FIGURES…………….……………….…………………………………....v TABLES..…………..………………………………...…………………ix CHAPTER 1: INTRODUCTION…………………………………...………………... 1 1.1. Review of Si(100)-2×1 Surface……………………………………………….. 1 1.2. Review of Nickel Silicides………...……………………………………………. 6 1.3. Motivation and Organization………………………………………………….11 CHAPTER 2: EXPERIMENTS……………………………...……………………...14 2.1. Introduction of Photoelectron Spectroscopy……………………………….. 14 2.2. Synchrotron Radiation………………………………….…...........................20 2.3. Beam-line Specifications……………………………………………………... 22 2.4. Ultra-high Vacuum Chamber.…………………………………………………26 2.4.1. Pumping system………....……………………………...……………... 27 2.4.2. Hemispherical electron analyzer……………………………………...27 2.5. Sample Preparation…………………………………………………………… 32 2.5.1. clean n-Si(100) surface preparation………...……………..………... 32 2.5.2. nickel evaporation……………………………………………………. 36 2.6. Curve Fitting...…………………………………………………………………. 36 2.7. Scanning Electron Microscopy (SEM)……………………………………….41 CHAPTER 3: CLEAN Si(100)-2x1 SURFACE…………………………...………42 3.1. Clean Si(100)-2×1 Surface…………………………………………………… 42 3.2. Early nucleation on the Si(100)-2x1 surface………………………………..44 CHAPTER 4: BAND BENDING at Ni/Si(100) INTERFACE……………………55 4.1. Photoemission Spectra………………………...……………………………... 55 4.2. Curve-fitting of Si 2p Spectra...…………….…………………………………61 CHAPTER 5: SOLID STATE AMORPHIZATION at Ni/Si(100) INTERFACE… 72 5.1. Photoemission Spectra………………………………………........................ 72 5.2. Curve-fitting of Si 2p Spectra..……………………………………………….. 77 5.3. The Growth Mode of the Amorphous Ni-Si System..………………………85 CHAPTER 6: PHASE FORMATION at Ni/Si(100)-2x1 INTERFACE………... 88 6.1. Introduction……….….…….…………….…………..…………..…………….88 6.2. Si 2p spectra at Different Ni Coverage …………….………………………..88 6.2.1. Annealing at 5 ML Ni/Si(100) interface…..….……………………..……88 6.2.2. Annealing at 7 ML Ni/Si(100) interface.………………………………….92 6.2.3. Annealing at 8 ML Ni/Si(100) interface.………………………………….95 6.3. Curve-fitting of Si 2p Spectra at 7 ML Ni/Si(100) After Annealing……...99 6.4. SEM images of 7 ML Ni Coverage After Annealing……………………….103 CHAPTER 7: CONCLUSION……………………………………………………..113 REFERENCES…………………………………………………………………….…115

    1 K. Oura, V. G. Lifshits, A. A. Saranin, A. V. Zotov, and M. Katayama, Surf. Sci. Rep. 35, 1 (1999).
    2 R. E. Schlier and H. E. Farnsworth, J. Chem. Phys. 30, 917 (1959).
    3 J. J. Lander and Morrison, J. Chem. Phys. 37, 729 (1962).
    4 A. Ignatiev, F. Jona, M. Debe, D. E. Johnson, J. S. White, and D. P. Woodruff, J. Phys. C 10, 1109 (1977).
    5 T. D. Poppendieck, T. C. Ngoc, and M. B. Webb, Surf. Sci. 75, 287 (1978).
    6 P. M. Gundry, R. Holtom, and V. Leverett, Surf. Sci. 43, 647 (1974).
    7 M. J. Cardillo and G. E. Becker, Phys. Rev. Lett. 40, 1148 (1978).
    8 M. J. Cardillo and G. E. Becker, Phys. Rev. B 21, 1497 (1980).
    9 D. Hanema, Rep. Prog. Phys. 50, 1045 (1987).
    10 R. M. Tromp, R. J. Hamers, and J. E. Demuth, Phys. Rev. Lett. 55, 1303 (1985).
    11 D. H. Rich, T. Miller, and T.-C. Chiang, Phys. Rev. B 37, 3124 (1988).
    12 R. J. Hamers, R. M. Tromp, and J. E. Demuth, Surf. Sci. 181, 346 (1987).
    13 R. J. Hamers, R. M. Tromp, and J. E. Demuth, Phys. Rev. B 34, 5343 (1986).
    14 Y. Enta, S. Suzuki, and S. Kono, Phys. Rev. Lett. 65, 2704 (1990).
    15 T. Tabata, T. Aruga, and Y. Murata, Surf. Sci. 179, L63 (1987).
    16 J. C. Phillips, Surf. Sci. 40, 459 (1973).
    17 W. A. Harrison, Surf. Sci. 55, 1 (1976).
    18 R. Seiwatz, Surf. Sci. 2, 473 (1964).
    19 F. Jona, H. D. Shin, A. Ignatiev, D. W. Jepsen, and P. M. Marcus, J. Phys. C 10, L67 (1977).
    20 C. J. Karlsson, E. Landemark, L. S. O. Johansson, and R. I. G. Uhrberg, Phys. Rev. B 42, 9546 (1990).
    21 J. A. Appelbaum and D. R. Hamann, Surf. Sci. 74, 21 (1978).
    22 J. D. Levine, Surf. Sci. 34, 90 (1973).
    23 J. A. Appelbaum, G. A. Baraff, and D. R. Hamann, Phys. Rev. Lett. 35, 729 (1975).
    24 J. A. Appelbaum, G. A. Baraff, and D. R. Hamann, Phys. Rev. B 14, 588 (1976).
    25 F. J. Himpsel and D. E. Eastman, J. Vac. Sci. Technol. 16, 1297 (1979).
    26 D. J. Chadi, Phys. Rev. Lett. 43, 43 (1979).
    27 K. C. Pandey, in Proceeding of the Seventeenth International Conference on the Physics of Semiconductors (New York, 1985).
    28 M. C. Payne, N. Roberts, R. J. Needs, M. Needels, and J. D. Joannopoulos, Surf. Sci. 211, 1 (1989).
    29 N. Roberts and R. J. Needs, Surf. Sci. 236, 112 (1990).
    30 J. Ihm, M. L. Cohen, and D. J. Chadi, Phys. Rev. B 21, 2303 (1980).
    31 M. T. Yin and M. L. Cohen, Phys. Rev. B 24, 2303 (1981).
    32 J. Pollmann, R. Kalla, P. Kruger, A. Mazur, and G. Wolfgarten, Appl. Phys. A 41, 21 (1986).
    33 F. Bechstedt and D. Reichardt, Surf. Sci. 202, 83 (1988).
    34 W. S. Verwoerd, Surf. Sci. 99, 581 (1980).
    35 Z. Zhu, N. Shima, and M. Tsukada, Phys. Rev. B 40, 11868 (1989).
    36 J. Ihm, D. H. Lee, J. D. Joannopoulos, and J. J. Xiong, Phys. Rev. Lett. 51, 1972 (1982).
    37 A. Saxena, E. T. Gawlinski, and J. D. Gunton, Surf. Sci. 160, 618 (1985).
    38 R. A. Wolkow, Phys. Rev. Lett. 68, 2636 (1992).
    39 H. Tochihara, T. Amakusa, and T. Iwatsuki, Phys. Rev. B 50, 12262 (1994).
    40 A. W. Munz, C. Ziegler, and W. Gopel, Phys. Rev. Lett. 74, 2244 (1995).
    41 E. Landemark, C. J. Karlsson, Y.-C. Chao, and R. I. G. Uhrberg, Phys. Rev. Lett. 69, 1588 (1992).
    42 G. K. Wertheim, D. M. Riffe, J. E. Rowe, and P. H. Citrin, Phys. Rev. Lett. 67, 120 (1991).
    43 D.-S. Lin, T. Miller, and T.-C. Chiang, Phys. Rev. Lett. 67, 2187 (1991).
    44 T.-W. Pi, I.-H. Hong, C.-P. Cheng, and G. K. Wertheim, J. El. Spectr. Rel. Phen. 107, 163 (2000).
    45 S. P. Murarka, Metallization-Theory and Practice for VLSI and ULSI (Butterworth-Heinemann, Boston, MA, 1993).
    46 G. Ottaviani, J. Vac. Sci. Technol. 16, 1112 (1979).
    47 K. N. Tu, Appl. Phys. Lett. 27, 221 (1975).
    48 N. W. Cheung and J. W. Mayer, Phys. Rev. Lett. 46, 671 (1981).
    49 P. J. Grunthaner, F. J. Grunthaner, A. Madhukar, and J. W. Mayer, J. Vac. Sci. Technol. 19, 649 (1981).
    50 O. Bisi and K. N. Tu, Phys. Rev. Lett. 52, 1633 (1984).
    51 R. M. Walser and R. W. Bené, Appl. Phys. Lett. 28, 624 (1976).
    52 Y. J. Chang and J. L. Erskine, J. Vac. Sci. Technol. A 1, 1193 (1983).
    53 Y. J. Chang and J. L. Erskine, Phys. Rev. B 26, 4766 (1982).
    54 Y. J. Chang and J. L. Erskine, Phys. Rev. B 28, 5766 (1982).
    55 S. Higai and T. Ohno, Appl. Surf. Sci. 166, 149 (2000).
    56 A. Horsfield, E. Akhmatskaya, R. Nobes, J. Andzelm, G. Fitzgerald, and N. Govind, Phys. Rev. B 66, 85309 (2002).
    57 K. Holloway and R. Sinclair, J. Appl. Phys. 61, 1539 (1987).
    58 W. H. Wang and W. K. Wang, J. Appl. Phys. 76, 1578 (1994).
    59 J. Y. Cheng and L. J. Chen, J. Appl. Phys. 69, 2161 (1991).
    60 V. Demuth, H. P. Strunk, D. Wörle, C. Kumpf, E. Burkel, and M. Schulz, Appl. Phys. A 68, 451 (1999).
    61 M. Nathan, Appl. Phys. Lett. 49, 257 (1986).
    62 C.-P. Ouyang, J.-J. Chang, J.-F. Wen, L.-C. Tien, J. Hwang, and T.-W. Pi, J. Appl. Phys. 91, 1204 (2002).
    63 U. Gösele and K. N. Tu, J. Appl. Phys. 66, 2619 (1989).
    64 G. B. Kim, D.-J. Yoo, H. K. Baik, J.-M. Myoung, S. M. Lee, S. H. Oh, and C. G. Park, J. Vac. Sci. Technol. B 21, 319 (2003).
    65 R. B. Schwarz and W. L. Johnson, Phys. Rev. Lett. 51, 415 (1983).
    66 W. H. Wang and L. J. Chen, Appl. Phys. Lett. 59, 2460 (1991).
    67 B. A. Julies, D. Knoesen, R. Pretorius, and D. Adams, Thin Solid Films 347, 201 (1999).
    68 F. D'Heurle, C. S. Petrsson, J. E. E. Baglin, S. J. La Placa, and C. Y. Wong, J. Appl. Phys. 55, 4208 (1984).
    69 Y. J. Chang and J. L. Erskine, Phys. Rev. B 28, 5766 (1983).
    70 G. Ottaviani, K. N. Tu, and J. W. Mayer, Phys. Rev. Lett. 44, 284 (1980).
    71 E. H. Rhoderick, Metal Semiconductor Contacts (Oxford, Clarendon, 1978).
    72 P. E. Schmidt, P. S. Ho, and T. Y. Tan, J. Vac. Sci. Technol. 20, 688 (1982).
    73 V. Teodorescu, L. Nistor, H. Bender, A. Steegen, A. Lauwers, K. Maex, and J. Van Landuyt, J. Appl. Phys. 90, 167 (2001).
    74 K. Siegbahn, C. Nordling, A. Fahlman, R. Nordberg, K. Hamrin, J. Hedman, G. Johansson, T. Bergmark, S. E. Karlsson, I. Kindgren, and B. Lindberg, Nova Acta Regiae Societatis Scientiarum Upsaliensis, Vol. Ser. IV 20 (1967).
    75 K. Siegbahn, Science 217, 111 (1982).
    76 C. R. Brundle, Sur. Sci 48, 99 (1975).
    77 A. Ishizaka and Y. Shiraki, J. Electrochem. Soc. 133, 666 (1986).
    78 E. L. Bullock, R. Gunnella, L. Patthey, T. Abukawa, S. Kono, C. R. Natoli, and L. S. O. Johansson, Phys. Rev. Lett. 74, 2756 (1995).
    79 D.-S. Lin and T.-C. Chiang, Phys. Rev. Lett. 67, 2187 (1991).
    80 E. Pehlke and M. Scheffler, Phys. Rev. Lett. 71, 2338 (1993).
    81 T.-W. Pi, R.-T. Wu, C.-P. Ouyang, J.-F. Wen, and G. K. Wertheim, Surf. Sci. 461, L565 (2000).
    82 T.-W. Pi, R.-T. Wu, J.-F. Wen, C.-P. Ouyang, and G. K. Wertheim, Surf. Sci. 478, L333 (2001).
    83 T.-W. Pi, S.-F. Tsai, J.-F. Wen, and C.-P. Ouyang, Surf. Sci. 488, 387 (2001).
    84 R. I. G. Uhrberg, E. Landemark, and Y.-C. Chao, J. Electron Spectrosc. Relat. Phenom. 75, 197 (1995).
    85 H. W. Yeom, T. Abukawa, Y. Takakuwa, Y. Mori, T. Shimatani, A. Kakizaki, and S. Kono, Phys. Rev. B 54, 4456 (1996).
    86 Y.-J. Chang and J. L. Erskine, Phys. Rev. B 26, 4766 (1982).
    87 Y.-J. Chang and J. L. Erskine, Phys. Rev. B 28, 5766 (1983).
    88 P. J. Grunthaner, F. J. Grunthaner, and A. Madhukar, J. Vac. Sci. Technol. 20, 680 (1982).
    89 Y.-J. Chang and J. L. Erskine, J. Vac. Sci. Technol. A 1, 1193 (1983).
    90 F. J. Himpsel and P. Heimann, Phys. Rev. Lett. 45, 1112 (1980).
    91 H. Lüth, Surfaces and Interfaces of Solid Materials, 3rd ed. (Springer, Berlin, 1995).
    92 L. J. Chen, C. M. Doland, I. W. Wu, J. J. Chu, and S. W. Liu, J. Appl. Phys. 62, 2789 (1987).
    93 J. P. Sullivan, R. T. Tung, and F. Schrey, J. Appl. Phys. 72, 478 (1992).
    94 B. A. Julies, D. Knoesen, R. Pretorius, and D. Adams, Thin Solid Films 347, 201 (1999).
    95 F. D'Heurle, C. S. Petrsson, L. Slot, and B. Strizker, J. Appl. Phys. 55, 4208 (1984).
    96 E. Maillard-Schaller, B. I. Boyanov, S. English, and R. J. Nemanich, J. Appl. Phys. 85, 3614 (1999).
    97 I. Ono, M. Yoshimura, and K. Ueda, J. Vac. Sci. Technol. B 16, 2947 (1998).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE