研究生: |
潘彥儒 Pan, Yan-Ru |
---|---|
論文名稱: |
微波激發同軸慢波結構線型表面波電漿源之研究 Study of a Surface Wave Linear Plasma Source Excited by a Dielectric Loaded Coaxial Slow Wave Structure |
指導教授: |
寇崇善
Kou, Chwung-Shan |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 114 |
中文關鍵詞: | 微波電漿 、表面波 、線型電漿源 |
外文關鍵詞: | microwave plasma, surface wave, linear plasma source |
相關次數: | 點閱:54 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究為發展一新型線型微波電漿源,利用同軸慢波結構激發電漿表面波,以達到大尺寸及高電漿密度的特性。其設計為中心導體外包覆PTFE、空氣、石英和電漿的四層介質結構,透過色散理論的計算,我們將此結構設計為一2.45 GHz的共振腔;利用網路分析儀量測,我們可以確定此共振腔所激發的模式為TM 0,1,10 模,且色散關係與理論相符。透過氬氣電漿的電漿特性量測,我們可以看到,在靠近石英管的區域(電漿加熱區域),不同輸入功率下,電漿密度最大值皆出現在500 mTorr附近,其加熱機制主要為Ohmic heating;並且電漿密度具有一下限值(2 × 10^11 cm^-3),與理論相符;在遠離石英管區域,電漿密度決定於擴散效應(電漿密度反比於氣壓);在455 mm長的共振腔中,電漿均勻度±5 %的要求下長度可達20 cm,電子溫度約為1.5 eV;為驗証此結構具有可scaling up的特性,我們將此結構延伸至一米長,其結果顯示,即使只使用單一微波源,在此結構中仍然可以維持電漿高均勻度及高密度的特性,在腔體中央80 cm的區域,電漿密度的均勻度可達±10 %,其電子溫度約為1.5 eV。
[1]M. Laroussi. IEEE Trans. Plasma Sci. 24, 1188-1191, 1996.
[2]Tina S. Alster and Sailesh Konda, Dermatologic Surgery, 33, 1315-1321, 2007.
[3]Young Yeon Ji, Hong Ki Chang, Yong Cheol Hong and Suck Hyun Lee, Current Applied Physics, 9, 253-256, 2009.
[4]H.-E. Wagner, R. Brandenburg, K.V. Kozlov, A. Sonnenfeld, P. Michel and J.F. Behnke, Vacuum, 71, 417-436, 2003.
[5]J. Y. Jeong, S. E. Babayan, V. J. Tu, J. Park, R. F. Hicks, and G. S. Selwyn, Plasma Source Sci. Technol., vol. 7, no. 3, pp. 282-285, 1998.
[6]F. Werner, D. Korzec and J. Engemann, Plasma Source Sci. Technol., 3, 473, 1994.
[7]Brake M L, Hinkle J, Asmussen J, Hawley M and Kerber R, J. Plasma Chem. Plasma Process, 3, 63, 1983.
[8]Moisan M, Barbeau C, Claude R, Ferreira C M, Margot J, Paraszczak J, Sa A, Sauve G and Wertheimer M R, J. Vac. Sci. Technol. B9 8, 1991.
[9]Ferreira C M and Loureiro J, J. Phys. D: Appl. Phys., 17, 1175, 1984.
[10]Michael A. Lieberman and Richard A. Gottsho, Physics of thin films, Vol. 18, Acdematic press, New York, 1994.
[11]M. Geisler, J. Kieser, E. Rauchle and R. Wilhelm, J. Vac. Sci. Technol.,A8 (2), 908, 1990.
[12]Microwave Excited Plasma, edited by M. Moisan and J. Pelletier (Elsevier, Amsterdam, 1992).
[13]Microwave Discharges: Fundamental and Applications, NATO Advanced Study Institute, Series B: Physics Vol. 302, edited by C. M. Ferreira and M. Moisan (Plenum, New York, 1993).
[14]Komachi K and Kobayashi S, J. Microwave Power Electromagn. Energy 24 140, 1989.
[15]Komachi K, J. Vac. Sci. Technol. A 11 164, 1993.
[16]Akimoto T, Ikawa E, Sango T, Komachi K, Katayama K and Ebata T, Japan. J. Appl. Phys. 33 7037, 1994.
[17]T. J. Wu and C. S. Kou, Rev. Sci. Instrum., 70, 2331(1999).
[18]T. J. Wu and C. S. Kou, Phys. Plasmas, 12, 103504(2005).
[19]T. J. Wu, W. J. Guan, C. M. Tsai, W. Y. Yeh, and C. S. Kou, Phys. Plasmas, 8, 3195 (2001).
[20]H. Sugai, I. Ghanashev and M. Nagatsu, Plasma sources Sci. Technol., 7, 192 (1998).
[21]Nagatsu M, Xu G, Yamage M, Kanoh M and Sugai H, Japan. J. Appl. Phys. 35 L341, 1996.
[22]Ghanashev I, Nagatsu M and Sugai H, Japan. J. Appl. Phys. 36 337, 1997.
[23]Korzec D, Werner F, Winter R and Engemann J, Plasma Sources Sci. Technol. 5 216, 1996.
[24]W Petasch, E Rauchle, H Muegge and K Muegge, Surf. Coat. Technol. 93, 112-118, 1997.
[25]W.J. Soppe et al., Proc. 17th EPVSEC, 2001, Munich, p.1543-1546.
[26]M. LiehrT and M. Dieguez-Campo, Surf. Coat. Technol. 200, 21-25, 2005.
[27]K. Uller, dissertation, University Rostock, 1993.
[28]Robert E. Collin, Field theory of guided waves, IEEE press, New York, 1991.
[29]Dave M. Pozar, Microwave Engineering, Addison Weslly, New York, 1998.
[30]A. W. Trivelpiece, P. W. Gould, J. Appl. Phys. 30, 1784, 1959.
[31]Akira Ishimaru, Electromagnetic wave propagation, Radiation, and scattering, Englewood Cliffs, N.J.: Prentice Hall, 1991.
[32]A. Shivarova and I. Zhelyazkov, Plasma Physics, Vol. 20, pp.1049-1073, 1978.
[33]Yu. M. Aliev, H. Schluter, and A. Shivarova, Guided-Wave-Produced Plasmas, Springer-Verlag Berlin Heidelberg New York, 2000.
[34]F. F. Chen, in Plasma Diagnostic Techniques, edited by R. H. Huddle and S. L. Leonard (Academic, New York, 1995).
[35]M. Druyvesteyn and F. M. Penning, Rev. Mod. Phys., 12, 87, 1940.
[36]Yu. M. Kagan and V. I. Perel, Soviet Physics Uspekhi, Russian Vol. 81, Nos. 3-4, 1964.
[37]Michael A. Lieberman and Allan J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, (John Wiley & Sons, Inc.).
[38]Yuri P. Raizer, Gas Discharge Physics, (Springer-Verlag, Berlin Heidelberg, 1991).
[39]F. F. Chen, introduction to plasma physics and controlled fusion, plenum press, New York, 1993.