簡易檢索 / 詳目顯示

研究生: 蘇育萱
論文名稱: 多元化適地性服務輸出推論模式
A Model for Generating Outputs for Multiple Location-based Services
指導教授: 侯建良
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 224
中文關鍵詞: 適地性服務地理資訊鄰近標的物搜尋
外文關鍵詞: Location-based services, Nearest neighbor search, Geographic information
相關次數: 點閱:42下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   適地性服務(Location-Based Service,LBS)乃泛指適地性服務之服務提供者利用通訊技術獲得使用者之定位資訊與需求資訊後,結合預先由地理資料提供者取得之地理相關資訊,判定符合使用者需求且較接近服務需求者之資訊或資源,並透過行動網路將較接近服務需求者之資訊傳予服務需求者參考或將較接近服務需求者之資源分配予服務需求者使用。然而,地理資料提供者提供之地理相關資訊可能相當繁雜,造成服務提供者往往需耗費大量心力由繁雜之地理相關資訊中篩選符合服務需求者需求之資訊與服務;此外,綜觀過去相關研究,本研究發現過去相關研究於決定適地性服務輸出結果時往往僅考慮特定單一績效指標,造成推論之結果無法符合服務需求者多元化之需求。故本研究乃發展一套考量多項績效指標且適用於多種LBS應用情境之「多元化適地性服務輸出推論方法論」,期望能讓適地性服務之服務提供者根據服務需求者之需求訊息與資料提供者之地理相關資訊、配合各類型適地性服務之特性,以系統化之推論過程決定符合服務需求者需求之資訊與服務。
      於發展「多元化適地性服務輸出推論方法論」前,本研究先將服務需求者之需求訊息與資料提供者提供之地理相關資訊依其特性進行分類,並將需求訊息與地理相關資訊之分類結果交叉比對,以歸納適地性服務之六大基本類型。而本研究所發展之「多元化適地性服務輸出推論方法論」即根據六大適地性服務基本類型之特性發展其對應之輸出推論模式。此方法論之詳細作法為先將六大類型適地性服務中可能為服務需求者查詢目標之標的物及其對應之各屬性值維護於後端資料庫;當服務需求者提出需求訊息時,服務提供者即根據標的物屬性值、地理相關資訊及服務需求者定位資訊與需求等輸入資料,搭配各類型適地性服務之特性與對應之演算法進行相關資料之比對與計算,以篩選符合服務需求者多元化需求之標的物;最後,將篩選後之標的物與其對應之資訊/資源提供予服務需求者參考或使用。
      本研究尚以上述方法論為基礎,建構一套「多元化適地性服務系統」,並以三個適地性服務類型所對應之應用情境為案例進行系統績效驗證,以評估本系統之合理性與實用性。整體而言,本研究所提出之多元化適地性服務輸出推論模式可以系統化方式推論各種類型適地性服務之輸出結果;此外,本研究考量服務需求者於各適地性服務應用情境可能關切之各種指標,使所推論之輸出結果可滿足服務需求者多元化之需求。


      In the location-based services (LBS), the services provider utilizes the demander locations, demand specifications and geographic information to determine and deliver the information or services that can meet the demander requirements. The geographic information from the information provider might be huge and complicated and the service provider has to spend much time to filter the appropriate target objects to meet demander requirements. Furthermore, most previous LBS studies concern simply one type of performance indicators and thus the generated LBS outputs cannot comprehensively meet the diversified demands of demanders. In order to solve these problems, this research develops a model for generating outputs for multiple location-based services.
      At first, this research analyzes the demands from demanders and geographic information from the information provider to define the categories of demands and geographic information. Based on the categories of demands and geographic information, this research generalizes the six basic types of LBSs. Based on the characteristics of these LBSs, this research establishes the six sub-modules to generate LBS outputs for these six types of LBSs. In brief, as the demander sends his/her demands to the service provider, the service provider can utilize the demander location, demand specifications, geographic information and the corresponding sub-module to determine the closest target objects that meet the demander requirements. The information of the closest objects as well as related services are then delivered to the demander.
      This research also develops a multiple LBS system based on the proposed methodology. Furthermore, three LBS scenarios were used as examples to evaluate the performance of the proposed methodology and system. As a whole, the LBS output generation model can be used by service providers to systematically and efficiently determine the LBS information or services for demanders and meet their diversified demands in real cases.

    摘要 I ABSTRACT II 目錄 III 圖目錄 VI 表目錄 IX 第一章、研究背景 1 1.1研究動機與目的 1 1.2研究步驟 5 1.3研究定位 8 第二章、文獻回顧 15 2.1適地性服務服務需求者需求特性分析 15 2.1.1服務需求者偏好分析 15 2.1.2服務需求者行為模式分析 18 2.1.3服務需求者位置資訊保護與分析 22 2.2適地性服務地理資訊擷取 25 2.2.1靜態物件關係表達 26 2.2.2移動標的物位置預測 28 2.3適地性服務運作模式與系統內部設計 32 2.3.1適地性服務運作模式設計 32 2.3.2適地性服務系統內部設計 40 2.4適地性服務輸出結果推論 44 2.4.1接近服務需求者之標的物推論 44 2.4.2適地性路線規劃 47 2.4.3適地性資源分配 50 2.4.4適地性交通時間預測 52 2.5小結 55 2.5.1適地性服務服務需求者需求特性分析 55 2.5.2適地性服務地理資訊擷取 56 2.5.3適地性服務運作模式與系統內部設計 56 2.5.4適地性服務輸出結果推論 57 第三章、多元化適地性服務輸出推論方法論 59 3.1 LBS輸入資料解析 60 3.1.1 LBS需求訊息解析 61 3.1.2 LBS地理相關資訊解析 64 3.1.3基本適地性服務類型之形成 66 3.2多元化適地性服務輸出推論模式 69 3.2.1決定條件型目標路線規劃結果 69 3.2.2決定定點型條件目標對應常駐資訊查詢結果 86 3.2.3決定定點型條件目標對應動態資訊查詢結果 94 3.2.4決定移動型條件目標資訊查詢結果 107 3.2.5決定無目標型適地性服務對應動態資訊查詢結果 123 3.2.6決定無目標型適地性服務對應移動服務據點查詢結果 135 3.3小結 148 第四章、系統架構 149 4.1系統核心架構 149 4.2系統功能架構 150 4.3資料模式定義 153 4.4系統流程 155 4.4.1系統功能操作流程 156 4.4.2系統資料傳遞流程 158 4.5系統開發工具 159 第五章、系統實作與驗證分析 161 5.1情境應用說明 161 5.2系統驗證方式說明與驗證結果分析 171 5.2.1模組二─決定定點型條件目標對應常駐資訊查詢結果 171 5.2.2模組三─決定定點型條件目標對應動態資訊查詢結果 177 5.2.3模組四─決定移動型條件目標資訊查詢結果 186 第六章、結論與未來展望 193 6.1論文總結 193 6.2未來展望 197 參考文獻 199 附錄、系統功能操作說明 205 A.1一般使用者(服務需求者)功能 205 A.2系統管理者(服務提供者)功能 220

    1. 王雷春、陳世鴻、胡瑞敏,2008,「基於移動Agent和原數據的位置服務信息查詢」,計算機應用研究,第25卷,第12期,第3794-3796頁。
    2. 宋明安,2005,「緊急救災物流輸配送系統模式構建」,碩士論文(指導教授:許鉅秉),國立交通大學交通運輸研究所。
    3. 李俊杰,2003,「在無線網路環境下部署LDD做為廣告宣傳」,碩士論文(指導教授:李強),國立成功大學資訊工程學系。
    4. 卓訓榮、周幼珍、王晉元、蔡繼光,2009,「高速公路旅行時間預測─以k-NN方法與分群方法探討」,中華民國運輸學會學術論文研討會,第1231-1252頁。
    5. 林聯發、黃淵科,2007,「在廣播環境進行與位置有關的資訊查詢」,電子商務學報,第9卷,第2期,第377-400頁。
    6. 徐佳士,2009,「適地性服務運用於交通傳報系統之設計與實作」,碩士論文(指導教授:陳志誠),大同大學資訊經營研究所。
    7. 梁建文,2007,「適地性推薦機制之研究-以旅館推薦為例」,碩士論文(指導教授:郭木興、陳良駒),國防大學管理學院資訊管理系。
    8. 梁哲偉,2009,「位置管理平台:一種定位技術與LBS服務的中介軟體」,電腦與通訊,第85-90頁。
    9. 陳信遠、劉傳銘,2005,「即時交通資訊系統」,台灣地理資訊學會年會暨學術研討會論文集。
    10. 陳薇如,2004,「具適地性服務的聰明圖書館」,碩士論文(指導教授:王宗一),國立成功大學工程科學系。
    11. 陳薏如,2009,「緊急救災醫療物資之配送」,碩士論文(指導教授:許鉅秉),國立交通大學交通運輸研究所。
    12. 黃上銘、洪宇能、洪進福、何業勤,2008,「行動平台上之個人化即時路況交通服務系統」,臺灣網際網路研討會。
    13. 黃志泰,2007,「以位置和情境感知網絡為基礎之主動式校園資訊服務系統」,臺灣網際網路研討會。
    14. 黃淵科,2004,「在以位置為基礎的服務下連續對移動物體作K個最近鄰居搜尋」,碩士論文(指導教授:李強),國立成功大學資訊工程學系。
    15. 蔡昇翰,2006,「基於行動定位服務的即時旅行時間知識庫預測系統」,碩士論文(指導教授:曾憲雄),國立交通大學資訊科學與工程研究所。
    16. 謝耘東,2008,「在資料廣播環境中進行最短路徑查詢之研究」,碩士論文(指導教授:劉傳銘),國立台北科技大學資訊工程學系。
    17. Aris, G.-D. and Vassilios, S. V., 2009, “Concealing the position of individuals in location-based services,” Operational Research.
    18. Aris, G.-D., Vassilios, S. V. and Eleftheriou, D., 2009, “PLOT: Privacy in location based services: An open-ended toolbox,” The Tenth International Conference on Mobile Data Management, pp. 62-71.
    19. Artem, K., 2004, “Improving usability of location-based services with user-centric data querying,” Lecture Notes in Computer Science, Vol. 3268, pp. 365-374.
    20. Avella, P., Boccia, M. and Sforza, A., 2004, “Resource constrained shortest path problems in path planning for fleet management,” Mathematical Modeling and Algorithms, Vol. 3, No. 1, pp. 1-17.
    21. Chen, J., Cheng, R., Mokbel, M. and Chow, C.-Y., 2009, “Scalable processing of snapshot and continuous nearest-neighbor queries over one-dimensional uncertain data,” The VLDB Journal, Vol. 18, No. 5,pp. 1219-1240.
    22. Chen, X., Liu, W., Zhai, H. and Fang, Y., 2006, “Location-aware resource management in mobile ad hoc networks,” Wireless Networks, Vol. 12, No. 6, pp. 797-812.
    23. Chew, S. H., Chong, P. A., Gunawan, E., Goh, K. W., Kim, Y. and Soh, C. B., 2006, “A hybrid mobile-based patient location tracking system for personal healthcare applications,” The Twenty eighth Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5188-5191.
    24. Chow, C.-Y., Mokbel, M. F. and Liu, X., 2006, “A peer-to-peer spatial cloaking algorithm for anonymous location-based service,” Geographic Information Systems, pp. 171-178.
    25. Dunne, C. R., Candebat, T. and Gray, D., 2008, “A three-party architecture and protocol that supports users with multiple identities for use with location based services,” Proceedings of the Fifth International Conference on Pervasive Services, pp. 1-10.
    26. Feng, J., Zhu, Y., Mukai, N. and Watanabe, T., 2007, “Search on transportation networks for location-based service,” Applied Intelligence, Vol. 26, pp. 69-79.
    27. Flessa, S., 2000, “A linear programme for the optimal allocation of health care resources in developing countries,” Health Care Management Science, Vol. 3, No. 3, pp. 249-267.
    28. Hansen, J. P., Alapetite, A., Andersen, H. B., Malmborg, L. and Thommesen, J., 2009, “Location-based services and privacy in airports,” Lecture Notes in Computer Science, Vol. 5726, pp. 169-178.
    29. Huang, J.-Z., Liu, Y.-L., Liu, Y.-F., He, J.-H. and Chen, D., 2008, “Research and application on network update of land survey spatial data based on embedded GIS and GPS,” International Workshop on Geoscience and Remote Sensing, Vol. 1, pp. 532-535.
    30. Huang, L. and Barth, M., 2008, “A novel loglinear model for freeway travel time prediction,” The Eleventh International IEEE Conference on Intelligent Transportation Systems, pp. 210-215.
    31. Ibach, P. and Horbank, M., X., 2005, “Highly available location-based services in mobile environments,” Lecture Notes in Computer Science, Vol. 3335, pp. 126-133.
    32. Jin, M.-H., Horng, J.-T., Tsai, M.-F. and Wu, E. H.-K., 2007, “Location query based on moving behaviors,” Information Systems, Vol. 32, pp. 385-401.
    33. Jula, H., Dessouky, M. and Ioannou, P. A., 2006, “Truck route planning in nonstationary stochastic networks with time windows at customer locations,” Intelligent Transportation Systems, Vol. 7, No. 1, pp. 51-62.
    34. Kalnis, P., Ghinita, G., Mouratidis, K. and Papadias, D., 2007, “Preventing location-based identity inference in anonymous spatial queries,” Knowledge and Data Engineering, Vol. 19, No. 12, pp. 1719 - 1733.
    35. Karimi, H. A. and Liu, X., 2003, “A predictive location model for location-based services,” Proceedings of the 11th ACM International Symposium on Advances in Geographic Information Systems, pp. 126-133.
    36. Kim, J.-W., Kim, C.-S., Gautam, A. and Lee, Y., 2005, “Location-based tour guide system using mobile GIS and web crawling,” Lecture Notes in Computer Science, Vol. 3428, pp. 52-63.
    37. Ku, W.-S., Chen, Y. and Zimmermann, R., 2009, “Privacy protected spatial query processing for advanced location based services,” Wireless Personal Communications, Vol. 51, No. 1,pp. 53-65.
    38. Kühn, P. J., 2004, “Location-based services in mobile communication infrastructures,” AEUE - International Journal of Electronics and Communications, Vol. 58, No. 3, pp. 159-164.
    39. Kulik, L., 2009, “Privacy for real-time location-based services,” Sigspatial Special, Vol. 1, No. 2, pp. 9-14.
    40. Küpper, A. and Treu, G., 2006, “Efficient proximity and separation detection among mobile targets for supporting location-based community services,” Mobile Computing and Communications Review, Vol. 10, No. 3, pp. 1-12.
    41. Lee, J. W., Paek, O. H. and Ryu, K. H., 2004, “Temporal moving pattern mining for location-based service,” Journal of Systems and Software, Vol. 73, No. 3, pp. 481-490.
    42. Lee, J., Park, G.-L., Sung, C. O. and Kim, S.-W., 2008, “A group management scheme for an efficient location-based service,” Proceedings of the 2008 ACM Symposium on Applied Computing, pp. 1705-1709.
    43. Lee, W.-C. and Zheng, B., 2005, “DSI: A fully distributed spatial index for location-based wireless broadcast services,” The Twenty-fifth IEEE International Conference on Distributed Computing Systems, pp. 349-358.
    44. Lin, R., Zhao, Y., Zou, H. and Yang, F., 2008, “An enhanced location service with social feature,” The Forth International Conference on Wireless Communications, Networking and Mobile Computing, pp. 1-4.
    45. Lothar, F. and Tobias, S., 2005, “A multilaterally secure, privacy-friendly location-based service for disaster management and civil protection,” Lecture Notes in Computer Science, Vol. 3421, pp. 1130-1137.
    46. Lu, H., Chen, K. and Liu, B., 2007, “Bayesian network based behavior prediction model for intelligent location based services,” IEEE Conference on Industrial Electronics and Applications, pp. 703-708.
    47. Lu, H.-C. and Tseng, S. V., 2009, “Mining cluster-based mobile sequential patterns in location-based service environments,” International Conference on Mobile Data Management, pp. 273-278.
    48. Lup, L. W. and Srinivasan, D., 2007, “A hybrid evolutionary algorithm for dynamic route planning,” IEEE Congress on Evolutionary Computation, pp. 4743-4749.
    49. Mao, Z. and Douligeris, C., 2000, “A location-based mobility tracking scheme for PCS networks,” Computer Communications, Vol. 23, pp. 1729-1739.
    50. Sadoun, B. and Al-Bayari, O., 2007, “Location based services using geographical information systems,” Computer Communications, Vol. 30, No. 16, pp. 3154-3160.
    51. Satoh, I., 2007, “A location model for smart environments,” Pervasive and Mobile Computing, Vol. 3, pp. 158-179.
    52. Spanoudakis, M., Batistakis, A., Priggouris, I., Ioannidis, A., Hadjiefthymiades, S. and Merakos, L., 2003, “Extensible platform for location based services provisioning,” The Fourth International Conference on Web Information Systems Engineering Workshops, pp. 72-79.
    53. Tao, Y., Papadias, D. and Shen, Q., 2002, “Continuous nearest neighbor search,” Proceedings of the 28th International Conference on Very Large Data Bases Table of Contents, pp. 287-298.
    54. Tseng, S.-M. and Tsui, T.-F., T., 2004, “Mining multilevel and location-aware service patterns in mobile web environments,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 34, No. 6, pp. 2480-2485.
    55. Tseng, V. S., Lu, H. C. and Huang, C. H., 2007, “Mining temporal mobile sequential patterns in location-based service environments” The Thirteenth IEEE International Conference on Parallel and Distributed Systems, Vol. 1, pp. 1-8.
    56. Wu, C.-H., Wei, C.-C., Su, D.-C., Chang, M.-C. and Ho, J.-M., 2003, “Travel time prediction with support vector regression,” IEEE Proceedings on Intelligent Transportation Systems Proceedings, Vol. 2, pp. 1438-1442.
    57. Wu, K.-L., Chen, S.-K. and Yu, P. S., 2005, “Efficient processing of continual range queries for location-aware mobile services,” Information Systems Frontiers, Vol. 7, No. 4-5, pp. 435-448.
    58. Wu, S.-Y. and Wu, K.-T., 2006, “Effective location based services with dynamic data management in mobile environments,” Wireless Networks, Vol. 12, No. 3, pp. 369-381.
    59. Yun, J.-K., Kim, D.-O., Hong, D.-S., Kim, M. H. and Han, K.-J., 2006, “A real-time mobile GIS based on the HBR-tree for location based services,” Computers & Industrial Engineering, Vol. 51, No. 1, pp. 58-71.
    60. Zheng, P. and McDonald, M., 2009, “Estimation of travel time using fuzzy clustering method,” Intelligent Transport Systems, Vol. 3, No. 1, pp. 77-86.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE