簡易檢索 / 詳目顯示

研究生: 施雲騰
Shih, Yun-Teng
論文名稱: 利用互補相移頻譜技術應用於積體化動態可調真實時間延遲
Integrated Tunable True Time Delay Based on Complementary Phase Shifted Spectra Scheme
指導教授: 李明昌
Lee, Ming-Chang
口試委員: 劉怡君
Liu, Yi-Chun
林銘偉
Lin, Ming-Wei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 65
中文關鍵詞: 真實時間延遲互補相移頻譜氮化矽波導
外文關鍵詞: optical true time delay, complementary phase shifter, Si3N4 waveguide
相關次數: 點閱:46下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究致力於以氮化矽波導元件產生光學真實時間延遲(Optical True Time Delay, OTTD)。光學真實時間延遲,主要讓光訊號在傳播的過程中有時間的延遲,因而造成轉變回電訊號時相位的延遲。在材料的選擇上,由於光在OTTD結構的傳遞光程長,我們需要考慮到光在結構中傳遞的損耗,氮化矽波導(Silicon nitride waveguide, Si3N4 waveguide)擁有較低的傳遞損耗並且適用於較大的波長範圍,因此我們使用氮化矽單層結構作為波導主體。
    OTTD結構上包含一組Delay Interferometer (DI) 搭配Complementary Phase Shifter (CPSS), DI利用一對不對稱的波導長度並在前後端使用1x2和2x2的多模干涉耦合器產生一對互補訊號頻譜,之後接上CPSS,並利用CPSS上的加熱器達到互補訊號頻譜相位調整的功能,即可將DI所提供的固定時間延遲,形成可連續調變的時間延遲器。
    實驗結果我們成功觀測到5Gbit/s與2.4Gbit/s的訊號眼圖延遲12ps,且強度的頻譜變化皆符合我們的計算結果,若將元件加以改善為雙邊的相位調製器,並且改善加熱器,則可超越24ps的延遲甚至更有機會達到預期的48ps。


    This research is devoted to generating optical true time delay (OTTD) via silicon nitride waveguide components. The optical true time delay mainly introduces a time delay on a modulated optical signal, thus causing a lag in the signal phase when it is converted back to the electrical signal. In the choice of materials, due to the long transmission path of light in the OTTD structure, we need to consider the propagation loss in the structure. The silicon nitride waveguide (Si3N4 waveguide) has a lower transmission loss within a wide spectral range, so we use single silicon nitride layer as the main body of the waveguide structure.
    The OTTD structure includes a set of Delay Interferometer (DI) with Complementary Phase Shifter (CPSS). DI uses a pair of asymmetric waveguides with different lengths and uses 1x2 and 2x2 multimode interference couplers at the front and back ends to generate a pair of complementary signal spectra. The signal then is connected to the CPSS, and use the heater on the CPSS to achieve the phase adjustment on one of the complementary signal spectra. After these two complementary signal spectra recombine again, they introduce a group delay, depending on the phase shift in CPSS. Therefore, we can implement a continuously adjustable time delay.
    Experimental results show we successfully observed the signal eye diagrams of 5Gbit/s and 2.4Gbit/s delayed by 12ps, and the intensity spectrum variation are in good agreement with our calculation results. By optimizing the heater design, the time delay can be over 24ps and even more than 48ps.

    目錄 Abstract I 摘要 III 致謝 IV 目錄 V 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 1.3 文章架構 5 第二章 理論背景 6 2.1 光波導原理 6 2.2 多模干涉耦合器原理 16 2.3 真實時間延遲原理 22 2.4 Complementary Phase Shifted Spectral 原理 24 第三章 元件模擬與設計 27 3.1 CPSS-DI元件設計 27 3.2 多模干涉耦合器模擬 31 3.3 Matlab CPSS元件模擬 33 第四章 元件製作及量測系統 38 4.1 元件製作流程圖 38 4.2 元件製作流程說明 41 4.3 真實時間延遲量測系統架設 52 第五章 實驗量測與分析 57 5.1 元件光頻譜量測 57 5.2 元件延遲時間量測 59 第六章 結果與討論 62 6.1 結論 62 6.2 改善 63 參考資料 64  

    [1] Z. Cao et al., "Spatial Filtering in a Broadband In-Home OFDM Radio-Over-Fiber Network," IEEE Photonics Technology Letters, vol. 26, no. 6, pp. 575-578, 2014, doi: 10.1109/lpt.2014.2298615.
    [2] I. Frigyes and A. J. Seeds, "Optically generated true-time delay in phased-array antennas," IEEE Transactions on Microwave Theory and Techniques, vol. 43, no. 9, pp. 2378-2386, 1995, doi: 10.1109/22.414592.
    [3] C. Roeloffzen, L. Zhuang, R. Heideman, A. Borreman, and W. Van Etten, "Ring resonator-based tunable optical delay line in LPCVD waveguide technology," in Proc. 9th IEEE/LEOS Symp. Benelux, 2005, pp. 79-82.
    [4] Y. Liu et al., "Single ring resonator delays for integrated optical beam forming networks," in 2016 IEEE International Topical Meeting on Microwave Photonics (MWP), 2016: IEEE, pp. 321-324.
    [5] N. M. Tessema et al., "A Tunable Si3N4 Integrated True Time Delay Circuit for Optically-Controlled K-Band Radio Beamformer in Satellite Communication," Journal of Lightwave Technology, vol. 34, no. 20, pp. 4736-4743, 2016, doi: 10.1109/jlt.2016.2585299.
    [6] Y. Liu et al., "Ultra-Low-Loss Silicon Nitride Optical Beamforming Network for Wideband Wireless Applications," IEEE Journal of Selected Topics in Quantum Electronics, vol. 24, no. 4, pp. 1-10, 2018, doi: 10.1109/jstqe.2018.2827786.
    [7] J. Xie, L. Zhou, Z. Li, J. Wang, and J. Chen, "Seven-bit reconfigurable optical true time delay line based on silicon integration," Opt Express, vol. 22, no. 19, pp. 22707-15, Sep 22 2014, doi: 10.1364/OE.22.022707.
    [8] X. Wang et al., "Continuously tunable ultra-thin silicon waveguide optical delay line," Optica, vol. 4, no. 5, pp. 507-515, 2017/05/20 2017, doi: 10.1364/OPTICA.4.000507.
    [9] D. Melati, A. Waqas, Z. Mushtaq, and A. Melloni, "Wideband Integrated Optical Delay Line Based on a Continuously Tunable Mach–Zehnder Interferometer," IEEE Journal of Selected Topics in Quantum Electronics, vol. 24, no. 1, pp. 1-8, 2018, doi: 10.1109/jstqe.2017.2723955.
    [10] P. Zheng et al., "A Seven Bit Silicon Optical True Time Delay Line for Ka-Band Phased Array Antenna," IEEE Photonics Journal, vol. 11, no. 4, pp. 1-9, 2019, doi: 10.1109/jphot.2019.2927487.
    [11] X. Wang, Y. Zhao, Y. Ding, S. Xiao, and J. Dong, "Tunable optical delay line based on integrated grating-assisted contradirectional couplers," Photonics Research, vol. 6, no. 9, 2018, doi: 10.1364/prj.6.000880.
    [12] Z. Geng-Yan, Z. Qiang, C. Kai-Yu, Z. Wei, and H. Yi-Dong, "Time-Domain Measurement of Optical True-Time Delay in Two-Dimensional Photonic Crystal Waveguides," Chinese Physics Letters, vol. 27, no. 11, 2010, doi: 10.1088/0256-307x/27/11/114212.
    [13] R. Bonjour, S. A. Gebrewold, D. Hillerkuss, C. Hafner, and J. Leuthold, "Continuously tunable true-time delays with ultra-low settling time," Opt Express, vol. 23, no. 5, pp. 6952-64, Mar 9 2015, doi: 10.1364/OE.23.006952.
    [14] "<Jia-ming Liu Photonics Devices.pdf>."
    [15] O. Bryngdahl, "Image formation using self-imaging techniques*," J. Opt. Soc. Am., vol. 63, no. 4, pp. 416-419, 1973/04/01 1973, doi: 10.1364/JOSA.63.000416.
    [16] A. Goutzoulis, K. Davies, J. Zomp, P. Hrycak, and A. Johnson, "Development and field demonstration of a hardware-compressive fiber-optic true-time-delay steering system for phased-array antennas," Appl. Opt., vol. 33, no. 35, pp. 8173-8185, 1994/12/10 1994, doi: 10.1364/AO.33.008173.
    [17] R. Bonjour et al., "Ultra-Fast Millimeter Wave Beam Steering," IEEE Journal of Quantum Electronics, vol. 52, no. 1, pp. 1-8, 2016, doi: 10.1109/jqe.2015.2509242.
    [18] F. Pipia, A. Votta, G. Obetti, E. Bellandi, M. Alessandri, and T. Nolan, "AlCu Metal Line Corrosion: A Case Study," Solid State Phenomena, vol. 134, pp. 367-370, 01/01 2008, doi: 10.4028/www.scientific.net/SSP.134.367.
    [19] D. Pérez et al., "Thermal tuners on a Silicon Nitride platform," arXiv preprint arXiv:1604.02958, 2016.

    QR CODE