簡易檢索 / 詳目顯示

研究生: 簡上傑
Chien, Shang-Chieh
論文名稱: 以雙層鍍膜方式製備鐵銠磊晶薄膜之研究
Study the epitaxy structure of FeRh thin films by bilayer deposition method
指導教授: 李志浩
Lee, Chih-Hao
口試委員: 林滄浪
Lin, Tsang-Lang
曾院介
Tseng, Yuen-Chieh
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 79
中文關鍵詞: 鐵銠薄膜磊晶
外文關鍵詞: FeRh, thin film, epitaxy
相關次數: 點閱:60下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • CsCl有序結構的FeRh合金在室溫時為反鐵磁相,加熱至約370 K時發生反鐵磁相轉變為鐵磁相之第一磁相變,此磁相變會伴隨著體積的增加、電阻及巨大磁熵的變化。本研究利用磁控濺鍍,雙層鍍膜方式來製備鐵銠薄膜,選用MgO作為基板,藉由改變鐵與銠的鍍膜順序、退火時間、及鍍膜的功率與時間,比較不同條件下鐵銠薄膜的成分與結構的變化。利用X光繞射、X光反射率量測鐵銠薄膜,來分析其晶體結構、序化程度、厚度、表面粗糙度。在此實驗中發現鐵與銠的鍍膜順序會影響FeRh的成長,Rh/Fe/MgO的樣品經過退火後,能形成結晶性良好的FeRh磊晶薄膜,Fe/Rh/MgO的樣品經過退火後,形成FeO/FeRh/Rh/MgO的結構,且形成FeRh的比例很少,原因還需探討與釐清。


    The ordered FeRh alloys with the CsCl structure are antiferromagnetic phase at room temperature. When FeRh alloys are heated to about 370 K, the first order magnetic phase transition from antiferromagnetic to ferromagnetic states occurs. This magnetic phase transition is accompanied by an increase in volume, a large change in the resistivity and entropy. In this study, FeRh thin films were prepared by magnetron sputtering with bilayer deposition method on MgO(001) substrates. The composition and structure of FeRh thin film were compared by changing the deposition order of Fe and Rh, the annealing time, the sputtering power and deposition time. The structure, order parameter, thickness and roughness of FeRh thin films were analyzed by XRD and XRR. In this experiment, the deposition order of Fe and Rh affects the growth of FeRh thin films tremendously. After annealing, Rh/Fe/MgO samples form epitaxial FeRh thin films with good crystallinity. However, Fe/Rh/MgO samples form FeO/FeRh/Rh/MgO structure with very less proportion of FeRh after annealing. The reason of this phenomenon is needed to be investigated in the future.

    摘要 i Abstract ii 致謝 iii 目錄 iv 表目錄 vii 圖目錄 viii 第一章 緒論 1 1.1 前言 1 1.2 物質磁性分類 2 1.3 FeRh合金系統相圖 5 1.4 氯化銫CsCl (B2)結構與L10結構 6 1.5 有序化相之FeRh合金磁性 8 1.6 FeRh的應用 10 1.7 文獻回顧 13 1.8 研究動機 18 第二章 儀器原理 19 2.1 濺鍍系統 (Sputtering System) 19 2.2 磁控濺鍍 (Magnetron Sputtering) 20 2.3 同步輻射 (Synchrotron Radiation) 21 2.4 X光繞射 (X-ray Diffraction) 23 2.5 X光反射率 (X-ray Reflectivity) 24 2.6 光電子顯微鏡 (Photoemission Electron Microscope) 27 2.7 XMCD (X-ray magnetic circular dichroism) 28 第三章 實驗方法 29 3.1 實驗流程 29 3.2 基板清洗 30 3.3 樣品製備 31 第四章 結果與討論 33 4.1 Fe與Rh鍍膜順序不同之比較 34 4.1.1 XRD結果 34 4.1.2 序化程度分析 40 4.1.3 不同退火時間之XRD結果 42 4.1.4 方位角掃描與磊晶取向之結果 47 4.1.5 XRR結果 54 4.2 XRD與XRR結果之討論 60 第五章 結論 68 未來展望 69 文獻參考 70 附錄 73 附錄A XMCD與PEEM研究FeRh薄膜之結果 73 附錄B The exchange bias effect on single layer of Fe-rich FeRh thin film 77

    1.金重勳, 磁性技術手冊 中華民國磁性技術學會出版 B.D. Cullity, Introduction to magnetic materials 近角聰信 著, 張喣 李學養 譯, 磁性物理學, 聯經出版.
    2.Swartzendruber, L.J., “The Fe−Rh (Iron-Rhodium) system”, Bulletin of Alloy Phase Diagrams, 1984, 5(5), p. 456-462.
    3.http://www.metafysica.nl/turing/preparation_3dim_3.html
    4.Radhika Barua et al, “Tuning the magnetostructural phase transition in FeRh nanocomposites”, Journal of Applied Physics, 2013, 113, p. 023910
    5.Shirane, G., R. Nathans, and C.W. Chen, “Magnetic Moments and Unpaired Spin Densities in the Fe-Rh Alloys”, Physical Review, 1964, 134(6A), p. A1547-A1553.
    6.Mancini, E., et al., “Magnetic phase transition in iron–rhodium thin films probed by ferromagnetic resonance”, Journal of Physics D: Applied Physics, 2013, 46(24), p. 245302.
    7.https://www.caloricool.org/area/magnetocaloric-effect
    8.O. Tegus, E. Bruck, K. H. J. Buschow & F. R. de Boer, “Transition-metal-based magnetic refrigerants for room-temperature applications”, Nature, 2002, 415, p. 150-152.
    9.Thiele, J.-U., S. Maat, and E.E. Fullerton, “FeRh/FePt exchange spring films for thermally assisted magnetic recording media”, Applied Physics Letters, 2003, 82(17), p. 2859-2861.
    10.M. Fallot, “The alloys of Iron with Metals of the Platinum family”, Annals of Physics, 1938, 10, p. 291-332.
    11.Cao, J., et al., “Magnetization behaviors for FeRh single crystal thin films”, Journal of Applied Physics, 2008, 103(7), p. 07F501.
    12.J. P. Ayoub et al, “Structure and chemical order in FeRh nanolayers epitaxially grown on MgO(001)”, Journal of crystal Growth, 2011, 314(1), p. 336-340.
    13.C. Baldasseroni et al, “Effect of capping material on interfacial ferromagnetism in FeRh thin films”, Journal of Applied Physics, 2014, 115, p. 043919.
    14.Yasushi Endo et al, “Formation of L10-type Ordered FePd Phase in Multilayers Composed of Fe and Pd”, Japanese Journal of Applied Physics, 2005, 44, p 3009.
    15.https://en.wikipedia.org/wiki/Sputter_deposition
    16.http://www.semicore.com/what-is-sputtering
    17.https://www.nsrrc.org.tw/
    18.https://en.wikipedia.org/wiki/X-ray_crystallography
    19.http://physics.valpo.edu/staff/arichter/XRR.htm
    20.Bjorck, M. and G. Andersson, “GenX: an extensible X-ray reflectivity refinement program utilizing differential evolution”, Journal of Applied Crystallography, 2007, 40(6), p. 1174-1178.
    21.de Vries, M.A., et al., “Hall-effect characterization of the metamagnetic transition in FeRh”, New Journal of Physics, 2013, 15(1), p. 013008.
    22.張庭瑋,「鐵銠薄膜之結構與磁相變性質之研究」,國立清華大學工程與系統科學系,碩士論文,中華民國一百零六年

    QR CODE