研究生: |
蔡明崴 Cai, Ming-Wei |
---|---|
論文名稱: |
關於獨立對數常態隨機變數和之分配函數估計的探討與改進 An improvement of moment matching method to lognormal sum approximation |
指導教授: |
胡殿中
Hu, Tien-Chung |
口試委員: |
呂理裕
趙一峰 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 22 |
中文關鍵詞: | 對數常態和 、共頻道干擾 、眾數法 、混合近似法 |
外文關鍵詞: | lognormal sum, cochannel interference, moment matching |
相關次數: | 點閱:70 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在蜂巢式行動無線電系統中,單一個干擾訊號的強度可以用一個對數常態隨機變數來表示,而共頻道干擾常會被表示成多個對數常態隨機變數的和。由於對數常態和的分布並沒有 analytic expression,通常會用單一個對數常態隨機變數來近似。基於這個假設,常用的近似方法有 Fenton-Wilkinson 方法和 Schwartz-Yeh 方法。
在觀察了對數常態的機率密度函數圖形後,我們提出了眾數法。與傳統方法相比,眾數法的機率密度函數圖形與真實分布更為接近。
之後我們又結合了 Fenton-Wilkinson 和 Schwartz-Yeh 兩種方法,提出了混合近似法。混合近似法的誤差比 Fenton-Wilkinson 方法小很多,且在計算速度上會比 Schwartz-Yeh 方法快。
In wireless communications, sums of lognormal random variables occur in many problems because signal shadowing is well modeled by the lognormal distribution. Since the lognormal sum distribution is known to have no analytic expression, a lognormal sum is usually approximated by a single lognormal random variable. In this paper, we provides two methods of lognormal sum approximation. One is based on the probability density function of lognormal random variables, and the other is a combination of Fenton-Wilkinson method and Schwartz-Yeh method. Numerical examples are provided to compare these approximations.
N. C. Beaulieu, A. A. Abu–Dayya, and P. J. McLane, “Estimating the distribution of a sum of independent lognormal random variables,” IEEE Trans. Commun., vol. 43, pp.2869–2873, Dec. 1995.
N. C. Beaulieu and Q. Xie, “An optimal lognormal approximation to lognormal sum distributions,” IEEE Trans. Veh. Technol., vol. 53, pp.479–489, March 2004.
T. Farley, “Mobile telephone history,” Telektronikk, vol. 3/4, pp. 22–34, 2005.
L. F. Fenton, “The sum of lognormal probability distributions in scatter transmission systems,” IRE Trans. Commun. Syst., vol. CS-8, pp. 57–67, 1960.
M. Pratesi, F. Santiccu and F. Graziosi, “Generalized moment matching for the linear combination of lognormal RVs: application to outage analysis in wireless systems,” IEEE Trans. Wireless. Commun., vol. 5, pp.1122–1132, May 2006.
S. C. Schwartz and Y. S. Yeh, “On the distribution function and moments of power sums with lognormal components,” Bell Syst. Tech. J., vol. 61, no. 7, pp. 1441–1462, 1982.
G. L. Stuber, Principles of Mobile Communications. Kluwer Academic Publishers, 1996.