研究生: |
陳毅軒 Chen, Yi-Shaun. |
---|---|
論文名稱: |
Cubitron™ II砂輪應用於易填塞材料之研究 A study on Cubitron™ II Wheel Grinding applied to Easy Loading Materials |
指導教授: |
左培倫
Tso, Pei-Lum |
口試委員: |
顏丹青
鄧建中 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 58 |
中文關鍵詞: | Cubitron™砂輪 、磨粒外型 、易填塞材料 、切屑構型 |
外文關鍵詞: | Cubitron™II, grain-shapes, Easy-loading-material, Chip-formation |
相關次數: | 點閱:86 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
易填塞材料因其材料性質,容易使其切屑因高溫而填塞,導致砂輪性能降低。因此必須修整砂輪才能回復砂輪性能,但頻繁的修整會導致砂輪的消耗增加並增加加工時間導致加工成本的增加。
3M公司新式磨料技術──Cubitron™ II,其重點為砂輪是由大小均一的三角形氧化鋁陶瓷磨粒所組成,較以往不規則磨粒不同,使得其磨削機制較傳統磨料有明顯的不同,相較以往其有較良好的磨削過程以及自銳現象。對磨削加工而言,它有可能帶來更高的材料移除率並降低磨削所產生的熱,並在此同時維持良好的工件表面品質。
本文希望運用Cubitron™ II 砂輪相較於以往氧化鋁砂輪磨削機制的不同,使其可能有提升材料移除量、降低磨削力、磨削溫度與工件表面粗糙度等的特性,並用切屑構型跟磨削性能的數據判斷Cubitron™ II 砂輪是否有助於提升對於易填塞材料的加工效率並延長砂輪使用壽命。
Easy-loading material is prone to load in high temperature while grinding ,which makes grinding wheels’ performance decreases. Thus we must repair the grinding wheel in order to recover its property. However frequent repairing will increase the cost.
With the latest tech Cubitron™ II from 3M, grinding wheels are made up of uniformly sized triangles of ceramic aluminum oxide in uniform size. Compared with the irregular size, the uniform size have great grinding process and great self-sharpening. For the grinding process, this tech may cause higher material removal rate, reduce the temperature while grinding and maintain the high quality of the surface.
Compared with the aluminum oxide grinding wheel,this study will apply the Cubitron™ II grinding wheels to increase the material removal rate ,and reduce the grinding force, temperature and surface roughness. Meanwhile we will use data from Chip formation and grinding performance to determine whether the Cubitron™ II will increase the processing efficiency and the lifetime of grinding wheels for the easy-loading material.
[1] 3M Company[3M], 2016。
[2] Ioan D.Marinescu, Toshiro K. Doi, Eckart Uhlmann, “Handbook of Ceramics Grinding and Polishing 2nd”, Elsevier, 2014。
[3] 安永暢男,高木純一郎,精密機械加工原理,全華圖書,2004。
[4] I E.J. Weller著,張瑞慶 譯,Nontraditional Machining Processes 2/e非傳統加工,高立圖書有限公司,1999。
[5] Ioan D. Marinescu, W. Brian Rowe, Boris Dimitrov, “Tribology of Abrasive Machining Processes 2nd", Willian Andrew, 2013。
[6] T. Murray, “Effects of Rotary Dressing on Grinding Wheel Performance”, ASME Ind 100(3), p.297-302,1978。
[7] Yueming Liu, “Investigation of different grain shapes and dressing to predict surface roughness in grinding using kinematic simulations”, Precision Engineering Volume 37, Issue 3, 2013。
[8] Manoj Kumar Sinha, Dinesh Setti, Sudarsan Ghosh, P Venkateswara Rao,基於砂輪磨料粒度的修整參數優化選擇,中國機床工具工業協會超硬材料分會,2015。
[9] 盧志勇,Inconel 718的切屑形態與麼削特性之研究,國立清華大學動機所碩士論文,1993。
[10] S. Ramanath, T. C. Ramaraj, and M. C. Shaw, “What Grinding Swarf Reveals,” CIRP Annals - Manufacturing Technology, Volume 36, Issue 1, 1987, p.245-247。
[11] Y. Peng, Z. Liang, Y. Wu, Y. Guo, C. Wang, “Characteristics of chip generation by vertical elliptic ultrasonic vibration-assisted grinding of brittle materials,” The International Journal of Advanced Manufacturing Technology, 62, 2012, p563-568。
[12] 田中義信、津和秀夫、井川直哉 著,賴耿陽 譯,精密加工新技術全集,復漢出版社,p.179,1988。
[13] 朱從容,超高速磨削及其關鍵技術,磨床與磨削,2000,4:51-52。
[14] 黃俊維,二維超聲振動輔助磨削藍寶石之研究,國立清華大學機械所碩士論文,2016。
[15] 林澧亦,高速磨削應用於碳化矽之研究,國立清華大學機械所碩士論文,2016。
[16] 藍梁綸,Cubitron II砂輪的磨削性能研究,國立清華大學機械所碩士論文,2016。