簡易檢索 / 詳目顯示

研究生: 陳世昌
論文名稱: 以微脂粒劑型包覆水溶性抗癌藥物Irinotecan之探討
指導教授: 朱一民
I-Ming Chu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 63
中文關鍵詞: 微脂粒pH梯度抗癌藥物
外文關鍵詞: Irinotecan, remote loading
相關次數: 點閱:77下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Irinotecan (CPT-11)為一種有效的抗癌藥物,目前臨床上被應用於直腸癌的治療。但因為Irinotecan在血液中的生理pH值環境下,易行水解反應,而失去抗癌活性 ; 並且會有嚴重的副作用(如延遲性腹瀉)產生,造成臨床上極大的困擾。因此本研究之目的,即在不改變藥物任何化學結構下,以微脂粒包覆Irinotecan,來改進現今所使用的給藥方式。
    本研究是利用實驗室所發展的各種微脂粒配方,以建立pH梯度的方式,將藥物載入微脂粒中。在進行藥物包覆時,探討不同操作條件對包覆效率的影響,實驗結果發現,在1ml、脂質濃度15mM(包覆檸檬酸液濃度為500mM)的微脂粒溶液、在加入1ml、1000mM的氫氧化鈉溶液(產生的pH值為3.8)及1ml、1mg/ml Irinotecan的條件下,對於EPC/Cholesterol(1 : 0.3 ;莫耳比)與EPC/Cholesterol/ DSPE-PEG-2000微脂粒(1 : 0.3 : 0.05;莫耳比)而言,包覆效率都可達95%以上。

    利用改變微脂粒組成(如添加負電脂質)或包覆dextran sulfate於微脂粒的內水相中等方法,都能減緩在37℃水浴下藥物的釋放速率。


    目 錄 第一章 研究動機與目的 1 第二章 文獻回顧 5 2-1 Irinotecan (CPT-11) 5 2-1-1 Irinotecan的發展史 5 2-1-2 Irinotecan的結構與作用機制 6 2-2 微脂粒 6 2-2-1 微脂粒的簡介 6 2-2-2 微脂粒的組成 7 2-2-3 微脂粒的結構 10 2-2-4 微脂粒的分類 11 2-2-5 微脂粒的相轉移 13 2-2-6 潛藏式微脂粒 14 2-3 微脂粒包覆Irinotecan的探討 15 2-4 pH gradient與微脂粒包覆 17 第三章 實驗藥品與方法 20 3-1 實驗藥品與儀器 20 3-1-1實驗藥品 20 3-3-2 實驗儀器 21 3-2 實驗方法 22 3-2-1 微脂粒的製備 22 3-2-2 利用pH梯度進行Irinotecan的包覆 22 3-2-3 微脂粒對Irinotecan的釋放探討 23 3-2-3 沈澱實驗 24 3-3 分析方法 25 3-3-1 粒徑的測量 25 3-3-2 包覆效率的測定 25 3-3-3 Sephadex TMG75 Fine層析管(2□12)取樣範圍的決定 26 3-3-4 包覆體積的估算 26 第四章 結果與討論 28 4-1 微脂粒對Irinotecan的包覆探討 29 4-1-1 不同酸液對包覆效率的影響 29 4-1-2 不同共浴溫度及時間對包覆效率的影響 29 4-1-3 不同檸檬酸液濃度對包覆效率的影響 30 4-1-4 不同濃度的氫氧化鈉溶液對包覆效率的影響 32 4-1-5 不同Irinotecan濃度對包覆效率的影響 33 4-2 微脂粒對Irinotecan的釋放分析 34 4-2-1 不同脂質組成的微脂粒對Irinotecan釋放的影響 34 4-2-2 添加負電磷脂質對Irinotecan釋放的影響 35 4-2-3 添加Dextran sulfate對Irinotecan釋放的影響 36 4-3 Irinotecan與Dextran sulfate的沈澱反應 37 第五章 結論與未來展望 55 第六章 參考文獻 57 圖 目 錄 圖2-1 Irinotecan的化學結構式 4 圖2-2磷質脂的化學結構 9 圖2-3 膽固醇的化學結構 9 圖2-4微脂粒的結構 10 圖2-5不同型態的微脂粒 12 圖2-6脂雙層膜在經過相轉移溫度時結構改變的示意圖 13 圖2-7潛藏式微脂粒躲避調理素吸附之示意圖 14 圖2-8 CPT-11水解形成SN-38 15 圖2-9 pH gradient造成藥物由膜的外側擴散至內側 18 圖4-1 EPC/Cholesterol(1:0.3;莫耳比)微脂粒在不同酸液下的包覆效率 38 圖4-2 40oC下,不同微脂粒組成在不同共浴時間的包覆效率 39 圖4-3 60oC下,不同微脂粒組成在不同共浴時間的包覆效率 40 圖4-4不同微脂粒組成在不同檸檬酸液濃度的包覆效率 41 圖4-5不同微脂粒組成在不同氫氧化鈉溶液濃度的包覆效率 42 圖4-6 EPC/Cholesterol(1:0.3)微脂粒在不同Irinotecan濃度下的包覆效率 43 圖4-7 37oC下,不同脂質組成的微脂粒對Irinotecan包覆率隨時間變化的影響 44 圖4-8不同脂質組成的微脂粒隨時間的粒徑變化 45 圖4-9 37oC下,在脂質組成中不同比例(莫耳比) 的DMPG,對Irinotecan包覆率隨時間變化的影響 46 圖4-10 37oC下,不同Dextran sulfate的添加量對Irinotecan包覆率隨時間變化的影響 47 表 目 錄 表2-1 常見的磷脂質種類 8 表4-1不同檸檬酸液濃度下EPC/Cholesterol微脂粒所包覆的體積、氫離子及Irinotecan莫耳數之估算 48 表4-2不同檸檬酸液濃度下EPC/Cholesterol/DSPE-PEG-2000微脂粒所包覆的體積、氫離子及Irinotecan莫耳數之估算 49 表4-3不同氫氧化鈉濃度下EPC/Cholesterol微脂粒的包覆體積及微脂粒內、外Irinotecan濃度之估算 50 表4-4不同氫氧化鈉濃度下EPC/Cholesterol/DSPE-PEG-2000微脂粒的包覆體積及微脂粒內、外Irinotecan濃度之估算 51 表4-5不同Irinotecan濃度下EPC/Cholesterol微脂粒所包覆的體積、氫離子及Irinotecan莫耳數之估算 52 表4-6不同Dextran sufate濃度下EPC/Cholesterol/DSPE-PEG-2000微脂粒的包覆體積及微脂粒內部Irinotecan濃度之估算 53 表4-7. 混合不同重量比的Irinotecan和Dextran sulfate所產生的沈澱比率 54 附 錄 附錄一Irinotecan濃度與HPLC積分面積之校正曲線 61 附錄二(A)積分儀之參數 (B) Irinotecan 的HPLC分析圖 62 附錄三 1 ml包有Irinotecan的微脂粒溶液過Sephadex TMG-75 Fine填充層析管(2□12cm)所得螢光強度與流出體積的關係圖 63

    1. M. E. Wall, M. C. Wani, C. E. Cook, K. H. Palmer and A. T. McPhail, “Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata”, Journal of the American Chemical Society , 88, 3888 (1966).
    2. R. Gallo, J. P. Whang and R. Adamson, “Studies on the antitumor activity, mechanism of action and cell cycle effects of camptothecin”, Journal of the National Cancer Institute , 46, 789 (1971).
    3. M. C. Wani, P. E. Ronman and J. T. Lindley, “Plant antitumor agents. 18, Synthesis and biological activity of camptothecin analogues”, Journal of Medicinal Chemistry , 23, 554 (1980).
    4. J. S. Gottlieb, A. M. Guarino, J. B. Call, V. T. Olivero and J. B. Blook, “Preliminary pharmacologic and clinical ebaluation of camptothecin sodium (NSC-100880)”, Cancer Chemotherapy Reports , 54, 451 (1970).
    5. Y. H. Hsiang, R. Hertzberg, S. Hecht and L. F. Liu, The Journal of Biological Chemistry , 260 , 14873 (1985).
    6. T. Yokokura, S. Sawada and K. Nokata, “Altileukemic activity of new camptothecin derivatives”, Proceedings of the Japanese Cancer Association , 40th Annual Meeting. Japan : Sapparo , 228 (1981).
    7. T. Yokokura, T. Furuta and S. Sawada, “Antitumor activity of newly synthesised, lactone ring closed and water soluble camptothecin derivative in mice”,Proceedings of the Japanese Cancer Association , 43th Annual Meeting. Japan : Fukuoka , 261 (1984).
    8. J. Kawato, M. Aonuma, Y. Hirto, H. Kuga and K. Sato, “Intracellular roles of SN-38 , a metabolite of the camptothecin derivative CPT-11 , in the antitumor effect of CPT-11”, Cancer Research , 51 , 4187 (1991).
    9. M. Noriyuki, K. Shinzoh and F. Masahiro, “Irinotecan(CPT-11) : pharmacology and clinical applications” , Critical Reviews in Oncology/Hematology , 24 , 3 (1996).
    10. C. Igor, M. Jean and D. S. Ganesh, “Kinetics of lactone hydrolysis in antitumor drugs of camptothecin series as studied by fluorescence spectroscopy” , Biochimica et Biophysica Acta , 1379 , 353 (1998).
    11. Y. H. Hsiang, R. Hertzberg, S. Hecht and L. F. Lin, “Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I” , The Journal of Biological Chemistry , 260 , 14873 (1985).
    12. D. Dickson, “U.K. Scientist Test Liposome Gene Therapy Technique” , Nature , 365 , 4 (1993).
    13. P. N. YI, “Temperature Dependence of Optical Properties of Aqueous Dispersion of Phosphatidylcholine” , Chemistry and physics of Lipids , 11 , 114(1973).
    14. N. Oku, “Delivery of contrast agents for positron emission tomography imaging by liposomes” , Advanced Drug Delivery Reviews , 37 , 53 (1999).
    15. A. B. Paul and M.G. Kevin “Nebulisers for the generation of liposomal aerosols International”, Journal of Pharmaceutics , 173 , 117 (1998)
    16. R. R. C. New, Liposomes : a practical approach, p.2, Oxford University Press, New York (1990).
    17. B. Santanu and H. Saubhik, “Interactions between cholesterol and lipids in bilayer membranes. Role of lipid headgroup and hydrocarbon chain-backbone linkage”, Biochimica et Biophysica Acta , 1467 , 39 (2000).
    18. 王蓓林,影響微脂粒穩定性因子之探討-氟碳化合物的添加,碩士論文,國立中央大學,中華民國台灣 (1990).
    19. D. L. Dan,“Novel applications of liposome” , TIBTECH, 16, 307(1998).
    20. S. Amarnath and S. S. Uma, “Liposomes in drug delivery: progress and limitations”, International Journal of Pharmaceutics, 154 , 123 (1997).
    21. M. G. Kevin and M. M. Rita, “Thermal analysis of phase transition behaviour in liposomes”, Thermochimica Acta , 248 , 289 (1995).
    22. W. C. Martin and D. L. Danilo, “Sterically stabilized liposomes”, Biochimica et Biophysica Acta , 1113 , 171 (1992).
    23. S. Yasuyuki, H. Sadzuka and H. Sadao, “Effect of liposomalization on the antitumor activity , side-effect and tissue distribution of CPT-11”, Cancer Letters , 127 , 99 (1998).
    24. C. R. Pieter, J. H. Michael, B. B. Marcel, D. M. Thomas, D. M. Lawrence and B. F. David, “Influence of pH gradients on the transbilayer transport of drugs, lipids , peptides and metal ions into large unilamellar vesicles”, Biochimica et Biophysica Acta , 1331 , 187 (1997).
    25. S. Clerc and Y. Barenholz, “Loading of amphipathic weak acids into liposomes in response to transmembrane calcium acetate gradients”, Biochimica et Biophysica Acta , 1240 , 257 (1995).
    26. D. M. Lawrence, C. L. Linda, B. B. Marcel, M. N. George and S. G. Richard, “Characterization of liosomal systems containing doxorubicin entrapped in response to pH gradients” , Biochimica et Biophysica Acta , 1025 , 143 (1990).
    27. M. S. Elisabeth, W. F. Kim, M. Norbert, B. F. David and R. C. Pieter, “Factors influencing uptake and retention of amino-containing drugs in large unilamellar vesicles exhibiting tramsmembrane pH gradients” , Biochimica et Biophysica Acta , 1416 , 1 (1999).
    28. C. Igor, M. M. Jean, D. S. Ganesh and R. F. Jean, “Kinetics of lactone hydrolysis in antitumor drugs of camptothecin series as studied by fluorescence spectroscopy” , Biochimica et Biophysica Acta , 1379 , 353 (1998).
    29. C. Huang and J. T. Mason, “Geometric packing constraints in egg phosphatdylchoine vesicles” , Proceedings of the National Academy of Sciences of the United States of America , 75 , 308 (1978).
    30. L. J. Lis, M. Mcalister, N. Fuller and R. P. Rand, “Interactions between neutral phospholipid bilayer membranes” , Biophysical Journal , 37 , 657 (1982).
    31. J. W. Nichols, and D. W. David, “Net proton-hydroxyl permeability of large unilamellar liposomes measured by and acid-base titration technique”, Proceedings of the National Academy of Sciences of the United States of America , 77 , 2038 (1980).
    32. B. G. Thomas, K. M. Awadesh, C. W. Mansukh and E. W. Monroe , “Lipid Bilayer Partitioning and Stability of Camptothecin Drugs”, Biochemistry , 32 , 5352 (1993).
    33. G. Zhu, E. Oto, V. Jan, Q. Yolanda, M. Newman, E. Charles and U. Paul , “The effect of vincristine-polyanion complexes in STEALTH liposomes on pharmacokinetics, toxicity and anti tumor activity”, Cancer Chemother Pharmacol , 39 , 138 (1996).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE