研究生: |
劉家欣 Jai-Shin Liu |
---|---|
論文名稱: |
以結構為基礎發展抑制胃幽門螺旋菌 dehydroquinate synthase的抑菌化合物之研究 Structure-based inhibitor discovery of Helicobacter pylori dehydroquinate synthase |
指導教授: |
王雯靜
Wen-Ching Wang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生命科學系 Department of Life Sciences |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 77 |
中文關鍵詞: | 幽門螺旋菌 、去氫奎寧酸合成酵素 、抑菌化合物 |
外文關鍵詞: | Helicobacter pylori, dehydroquinate synthase, inhibitor |
相關次數: | 點閱:92 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Helicobacter pylori 近年來已發現與胃炎、十二指腸潰瘍甚至胃癌有密切之關聯。在治療上仍以消化性潰瘍用藥加抗生素治療,但治療失敗與菌株產生抗藥性的機率日漸升高,所以找出適合去除H. pylori 的抑制藥物是未來對於此菌的治療上的重要工作。Shikimate 路徑存在於原核生物、真核生物、植物中,但在哺乳細
胞卻沒有,在原核生物主要反應是由七個步驟所組成,其功能是將D-Erythrose-4-phosphate 和Phosphoenoylpyruvate 經酵素轉變成最終產物chorismate,而chorismate則為合成許多aromatic 化合物重要的中間代謝物,因此路徑中的酵素便成為發展抑菌藥物的標靶。而Dehydroquinate synthase 是路徑中第二步驟的酵素,能將
7-deoxy-D-arabino-heptulosoe-7-phosphate 轉成3-dehydroquinate , 我們利用molecular replacement 的方法, 發表了解析度達到2.4Å 的H. pylori 的3-dehydroquinate synthase 的蛋白質結構。接下來,以循理性藥物設計方法結合蛋白質結構與電腦模擬的方法,加上電腦輔助的快速篩選則可以將藥物發展的時程
縮短。本論文則以HpDHQS 的蛋白質結構為基礎,深入研究其受質結合後與結構之間的關係,並配合以電腦模擬輔助篩選資料庫中的化合物,找出較有可能的candidate 化合物,再進一步測量其酵素活性的方法來印證其化合物的抑制能力。經由以上方法,我們以GOLD 程式以電腦模擬的方法快速大量篩選Maybridge 資料庫中約60000 筆的化合物,挑中的化合物中有7 組化合物對HpDHQS 有抑制活性,其中有2 組candidate 化合物其IC50 的值分別到達61 與84μM,透過循理性藥物設計方法分析,將會輔助前導化合物最佳化過程(lead optimization)以獲得最具潛力之抗菌藥物。
Helicobacter pylori is a gram-negative gastric pathogen that colonizes
approximately half of the human population and may persist in its presence for a
lifetime. Enduring infection of this peculiar microbe leads to the chronic inflammation
of gastric epithelial cells, which may further progress into peptic ulcers, gastric atrophy,
and gastric adenocarcinoma. The treatment of H. pylori infection using high-dosage
antibiotics, however, has resulted in decreased efficacy and resistance of antibiotics.
The need for new antibacterial therapies to overcome the problems of the drug
resistance is therefore a major concern of healthcare professionals. One potential
approach towards discovering new classes of inhibitors is to target crucial proteins in
bacterial but not in mammals. The shikimate pathway which involves seven sequential
enzymatic steps in the conversion of erythrose 4-phosphate (E4P) and
phosphoenolpyruvate (PEP) into chorismate for subsequent synthesis of aromatic
compounds is unique to microbial. Enzymes of this pathway are attractive targets for
the development of nontoxic antimicrobial compounds.Dehydroquinate synthase
(DHQS) is a nicotinamide adenine dinucleotide (NAD)-dependent enzyme that
converts 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) into 3-dehydroquinate
(DHQ). Since it catalyzes the second key step in the shikimate pathway, which is
crucial for the aromatic amino acid metabolism in bacteria, fungi and plants, but not in
mammals, DHQS is a potential target for new antimicrobial agents, antiparasitic agents
and herbicides. The crystal structure of H. pylori DHQS complexed with NAD has
been determined at 2.4-Å resolution and was found to possess an N-terminal
Rossmann-fold domain and a C-terminal α-helical domain. Structural comparison
reveals that the binary complex adopts an open-state conformation and shares
conserved residues in the binding pocket. Virtual docking of compounds into the active
site of the HpDHQS structure using the GOLD docking program led to the
identification of several inhibitors. The most active compound had an IC50 value of 61
μM, which may serve as a lead for potent inhibitors.
參考文獻:
[1] S.L. Hazell, A. Lee, L. Brady, W. Hennessy, Campylobacter pyloridis and
gastritis: association with intercellular spaces and adaptation to an
environment of mucus as important factors in colonization of the gastric
epithelium, J Infect Dis 153 (1986) 658-663.
[2] R.D. Leunk, P.T. Johnson, B.C. David, W.G. Kraft, D.R. Morgan, Cytotoxic
activity in broth-culture filtrates of Campylobacter pylori, J Med Microbiol
26 (1988) 93-99.
[3] T.L. Cover, M.J. Blaser, Purification and characterization of the vacuolating
toxin from Helicobacter pylori, J Biol Chem 267 (1992) 10570-10575.
[4] E.C. Chan, K.T. Chen, Y.L. Lin, Vacuolating toxin from Helicobacter pylori
activates cellular signaling and pepsinogen secretion in human gastric
adenocarcinoma cells, FEBS Lett 399 (1996) 127-130.
[5] M.J. Blaser, Gastric Campylobacter-like organisms, gastritis, and peptic
ulcer disease, Gastroenterology 93 (1987) 371-383.
[6] C.P. Dooley, H. Cohen, P.L. Fitzgibbons, M. Bauer, M.D. Appleman, G.I.
Perez-Perez, M.J. Blaser, Prevalence of Helicobacter pylori infection and
histologic gastritis in asymptomatic persons, N Engl J Med 321 (1989)
1562-1566.
[7] B. Drumm, P. Sherman, E. Cutz, M. Karmali, Association of Campylobacter
pylori on the gastric mucosa with antral gastritis in children, N Engl J Med
316 (1987) 1557-1561.
[8] Infection with Helicobacter pylori, IARC Monogr Eval Carcinog Risks Hum
61 (1994) 177-240.
[9] C.S. Goodwin, Duodenal ulcer, Campylobacter pylori, and the "leaking
roof" concept, Lancet 2 (1988) 1467-1469.
[10] M.M. Wolfe, A.H. Soll, The physiology of gastric acid secretion, N Engl J
Med 319 (1988) 1707-1715.
[11] D.A. Levin, G. Watermeyer, N. Mohamed, D.P. Epstein, S.J. Hlatshwayo,
D.C. Metz, Evaluation of a locally produced rapid urease test for the
diagnosis of Helicobacter pylori infection, S Afr Med J 97 (2007)
1281-1284.
[12] A.R. Hawkins, M. Smith, Domain structure and interaction within the
pentafunctional arom polypeptide, Eur J Biochem 196 (1991) 717-724.
[13] N. Figura, P. Guglielmetti, A. Rossolini, A. Barberi, G. Cusi, R.A.
Musmanno, M. Russi, S. Quaranta, Cytotoxin production by
Campylobacter pylori strains isolated from patients with peptic ulcers and
from patients with chronic gastritis only, J Clin Microbiol 27 (1989)
43
44
225-226.
[14] V. Savarino, M. Neri, S. Vigneri, PPI-based triple therapy in the eradication
of H. pylori infection, Gastroenterology 117 (1999) 746-747.
[15] F. Bazzoli, P. Pozzato, Therapy of H. pylori infection, J Physiol Pharmacol
48 Suppl 4 (1997) 39-46.
[16] K. Murakami, T. Fujioka, T. Okimoto, R. Sato, M. Kodama, M. Nasu, Drug
combinations with amoxycillin reduce selection of clarithromycin
resistance during Helicobacter pylori eradication therapy, Int J Antimicrob
Agents 19 (2002) 67-70.
[17] L. Pronai, Z. Tulassay, [Failure of Helicobacter pylori
eradication--suggestions for further therapy], Orv Hetil 144 (2003)
1299-1302.
[18] M.F. Go, Treatment and management of Helicobacter pylori infection, Curr
Gastroenterol Rep 4 (2002) 471-477.
[19] P.J. Jenks, D.I. Edwards, Metronidazole resistance in Helicobacter pylori,
Int J Antimicrob Agents 19 (2002) 1-7.
[20] J.D. de Korwin, [Helicobacter pylori infection and antimicrobial agents
resistance], Rev Med Interne 25 (2004) 54-64.
[21] J.F. Tomb, O. White, A.R. Kerlavage, R.A. Clayton, G.G. Sutton, R.D.
Fleischmann, K.A. Ketchum, H.P. Klenk, S. Gill, B.A. Dougherty, K.
Nelson, J. Quackenbush, L. Zhou, E.F. Kirkness, S. Peterson, B. Loftus, D.
Richardson, R. Dodson, H.G. Khalak, A. Glodek, K. McKenney, L.M.
Fitzegerald, N. Lee, M.D. Adams, E.K. Hickey, D.E. Berg, J.D. Gocayne,
T.R. Utterback, J.D. Peterson, J.M. Kelley, M.D. Cotton, J.M. Weidman, C.
Fujii, C. Bowman, L. Watthey, E. Wallin, W.S. Hayes, M. Borodovsky, P.D.
Karp, H.O. Smith, C.M. Fraser, J.C. Venter, The complete genome
sequence of the gastric pathogen Helicobacter pylori, Nature 388 (1997)
539-547.
[22] M.F. Alibhai, W.C. Stallings, Closing down on glyphosate inhibition--with
a new structure for drug discovery, Proc Natl Acad Sci U S A 98 (2001)
2944-2946.
[23] J. Lindenbaum, Drugs and vitamin B12 and folate metabolism, Curr
Concepts Nutr 12 (1983) 73-87.
[24] O.L. Gamborg, Aromatic metabolism in plants. II. Enzymes of the
shikimate pathway in suspension cultures of plant cells, Can J Biochem 44
(1966) 791-799.
[25] S.A. Campbell, T.A. Richards, E.J. Mui, B.U. Samuel, J.R. Coggins, R.
McLeod, C.W. Roberts, A complete shikimate pathway in Toxoplasma
gondii: an ancient eukaryotic innovation, Int J Parasitol 34 (2004) 5-13.
[26] T.A. Richards, J.B. Dacks, S.A. Campbell, J.L. Blanchard, P.G. Foster, R.
McLeod, C.W. Roberts, Evolutionary origins of the eukaryotic shikimate
pathway: gene fusions, horizontal gene transfer, and endosymbiotic
replacements, Eukaryot Cell 5 (2006) 1517-1531.
[27] S.G. Rogers, L.A. Brand, S.B. Holder, E.S. Sharps, M.J. Brackin,
Amplification of the aroA gene from Escherichia coli results in tolerance
to the herbicide glyphosate, Appl Environ Microbiol 46 (1983) 37-43.
[28] F. Roberts, C.W. Roberts, J.J. Johnson, D.E. Kyle, T. Krell, J.R. Coggins,
G.H. Coombs, W.K. Milhous, S. Tzipori, D.J. Ferguson, D. Chakrabarti, R.
McLeod, Evidence for the shikimate pathway in apicomplexan parasites,
Nature 393 (1998) 801-805.
[29] I.A. Shumilin, R. Bauerle, J. Wu, R.W. Woodard, R.H. Kretsinger, Crystal
structure of the reaction complex of
3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Thermotoga
maritima refines the catalytic mechanism and indicates a new mechanism
of allosteric regulation, J Mol Biol 341 (2004) 455-466.
[30] I.A. Shumilin, R.H. Kretsinger, R.H. Bauerle, Crystal structure of
phenylalanine-regulated 3-deoxy-D-arabino-heptulosonate-7-phosphate
synthase from Escherichia coli, Structure 7 (1999) 865-875.
[31] M. Kunzler, G. Paravicini, C.M. Egli, S. Irniger, G.H. Braus, Cloning,
primary structure and regulation of the ARO4 gene, encoding the
tyrosine-inhibited 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase
from Saccharomyces cerevisiae, Gene 113 (1992) 67-74.
[32] M. Sugahara, Y. Nodake, M. Sugahara, N. Kunishima, Crystal structure of
dehydroquinate synthase from Thermus thermophilus HB8 showing
functional importance of the dimeric state, Proteins 58 (2005) 249-252.
[33] E.P. Carpenter, A.R. Hawkins, J.W. Frost, K.A. Brown, Structure of
dehydroquinate synthase reveals an active site capable of multistep
catalysis, Nature 394 (1998) 299-302.
[34] C.E. Nichols, J. Ren, K. Leslie, B. Dhaliwal, M. Lockyer, I. Charles, A.R.
Hawkins, D.K. Stammers, Comparison of ligand-induced conformational
changes and domain closure mechanisms, between prokaryotic and
eukaryotic dehydroquinate synthases, J Mol Biol 343 (2004) 533-546.
[35] S. Singh, S. Korolev, O. Koroleva, T. Zarembinski, F. Collart, A.
Joachimiak, D. Christendat, Crystal structure of a novel shikimate
dehydrogenase from Haemophilus influenzae, J Biol Chem 280 (2005)
17101-17108.
45
[36] A.K. Padyana, S.K. Burley, Crystal structure of shikimate 5-dehydrogenase
(SDH) bound to NADP: insights into function and evolution, Structure 11
(2003) 1005-1013.
[37] J. Benach, I. Lee, W. Edstrom, A.P. Kuzin, Y. Chiang, T.B. Acton, G.T.
Montelione, J.F. Hunt, The 2.3-A crystal structure of the shikimate
5-dehydrogenase orthologue YdiB from Escherichia coli suggests a novel
catalytic environment for an NAD-dependent dehydrogenase, J Biol Chem
278 (2003) 19176-19182.
[38] B. Bagautdinov, N. Kunishima, Crystal structures of shikimate
dehydrogenase AroE from Thermus thermophilus HB8 and its cofactor and
substrate complexes: insights into the enzymatic mechanism, J Mol Biol
373 (2007) 424-438.
[39] J. Gan, Y. Wu, P. Prabakaran, Y. Gu, Y. Li, M. Andrykovitch, H. Liu, Y.
Gong, H. Yan, X. Ji, Structural and biochemical analyses of shikimate
dehydrogenase AroE from Aquifex aeolicus: implications for the catalytic
mechanism, Biochemistry 46 (2007) 9513-9522.
[40] H.A. Arcuri, J.C. Borges, I.O. Fonseca, J.H. Pereira, J.R. Neto, L.A. Basso,
D.S. Santos, W.F. de Azevedo, Jr., Structural studies of shikimate
5-dehydrogenase from Mycobacterium tuberculosis, Proteins 72 (2008)
720-730.
[41] S.A. Singh, D. Christendat, Structure of Arabidopsis dehydroquinate
dehydratase-shikimate dehydrogenase and implications for metabolic
channeling in the shikimate pathway, Biochemistry 45 (2006) 7787-7796.
[42] G. Michel, A.W. Roszak, V. Sauve, J. Maclean, A. Matte, J.R. Coggins, M.
Cygler, A.J. Lapthorn, Structures of shikimate dehydrogenase AroE and its
Paralog YdiB. A common structural framework for different activities, J
Biol Chem 278 (2003) 19463-19472.
[43] J. Gan, Y. Gu, Y. Li, H. Yan, X. Ji, Crystal structure of Mycobacterium
tuberculosis shikimate kinase in complex with shikimic acid and an ATP
analogue, Biochemistry 45 (2006) 8539-8545.
[44] M.J. Romanowski, S.K. Burley, Crystal structure of the Escherichia coli
shikimate kinase I (AroK) that confers sensitivity to mecillinam, Proteins
47 (2002) 558-562.
[45] W.C. Cheng, Y.N. Chang, W.C. Wang, Structural basis for
shikimate-binding specificity of Helicobacter pylori shikimate kinase, J
Bacteriol 187 (2005) 8156-8163.
[46] A.R. Hawkins, H.K. Lamb, C.F. Roberts, Structure of the Aspergillus
nidulans qut repressor-encoding gene: implications for the regulation of
46
transcription initiation, Gene 110 (1992) 109-114.
[47] S. Quevillon-Cheruel, N. Leulliot, P. Meyer, M. Graille, M. Bremang, K.
Blondeau, I. Sorel, A. Poupon, J. Janin, H. van Tilbeurgh, Crystal structure
of the bifunctional chorismate synthase from Saccharomyces cerevisiae, J
Biol Chem 279 (2004) 619-625.
[48] J.M. Henstrand, A. Schaller, M. Braun, N. Amrhein, J. Schmid,
Saccharomyces cerevisiae chorismate synthase has a flavin reductase
activity, Mol Microbiol 22 (1996) 859-866.
[49] J.H. Pereira, F. Canduri, J.S. de Oliveira, N.J. da Silveira, L.A. Basso, M.S.
Palma, W.F. de Azevedo, Jr., D.S. Santos, Structural bioinformatics study
of EPSP synthase from Mycobacterium tuberculosis, Biochem Biophys
Res Commun 312 (2003) 608-614.
[50] H. Park, J.L. Hilsenbeck, H.J. Kim, W.A. Shuttleworth, Y.H. Park, J.N.
Evans, C. Kang, Structural studies of Streptococcus pneumoniae EPSP
synthase in unliganded state, tetrahedral intermediate-bound state and
S3P-GLP-bound state, Mol Microbiol 51 (2004) 963-971.
[51] W.C. Stallings, S.S. Abdel-Meguid, L.W. Lim, H.S. Shieh, H.E. Dayringer,
N.K. Leimgruber, R.A. Stegeman, K.S. Anderson, J.A. Sikorski, S.R.
Padgette, G.M. Kishore, Structure and topological symmetry of the
glyphosate target 5-enolpyruvylshikimate-3-phosphate synthase: a
distinctive protein fold, Proc Natl Acad Sci U S A 88 (1991) 5046-5050.
[52] C.S. Gasser, J.A. Winter, C.M. Hironaka, D.M. Shah, Structure, expression,
and evolution of the 5-enolpyruvylshikimate-3-phosphate synthase genes
of petunia and tomato, J Biol Chem 263 (1988) 4280-4287.
[53] N. Pattabiraman, Analysis of ligand-macromolecule contacts:
computational methods, Curr Med Chem 9 (2002) 609-621.
[54] H. Mao, P.J. Hajduk, R. Craig, R. Bell, T. Borre, S.W. Fesik, Rational
design of diflunisal analogues with reduced affinity for human serum
albumin, J Am Chem Soc 123 (2001) 10429-10435.
[55] Z. Deng, C. Chuaqui, J. Singh, Structural interaction fingerprint (SIFt): a
novel method for analyzing three-dimensional protein-ligand binding
interactions, J Med Chem 47 (2004) 337-344.
[56] M.P. Beavers, X. Chen, Structure-based combinatorial library design:
methodologies and applications, J Mol Graph Model 20 (2002) 463-468.
[57] I.L. Lu, C.F. Huang, Y.H. Peng, Y.T. Lin, H.P. Hsieh, C.T. Chen, T.W. Lien,
H.J. Lee, N. Mahindroo, E. Prakash, A. Yueh, H.Y. Chen, C.M. Goparaju,
X. Chen, C.C. Liao, Y.S. Chao, J.T. Hsu, S.Y. Wu, Structure-based drug
design of a novel family of PPARgamma partial agonists: virtual screening,
47
X-ray crystallography, and in vitro/in vivo biological activities, J Med
Chem 49 (2006) 2703-2712.
[58] Y.M. Shao, W.B. Yang, H.P. Peng, M.F. Hsu, K.C. Tsai, T.H. Kuo, A.H.
Wang, P.H. Liang, C.H. Lin, A.S. Yang, C.H. Wong, Structure-based design
and synthesis of highly potent SARS-CoV 3CL protease inhibitors,
Chembiochem 8 (2007) 1654-1657.
[59] S.L. Bender, S. Mehdi, J.R. Knowles, Dehydroquinate synthase: the role of
divalent metal cations and of nicotinamide adenine dinucleotide in
catalysis, Biochemistry 28 (1989) 7555-7560.
[60] R.A. Laskowski, D.S. Moss, J.M. Thornton, Main-chain bond lengths and
bond angles in protein structures, J Mol Biol 231 (1993) 1049-1067.
[61] K.M. Herrmann, M.D. Poling, The synthesis of 3-deoxyheptulosonic acid
7-phosphate, J Biol Chem 250 (1975) 6817-6821.
[62] J.W. Frost, J.R. Knowles, 3-Deoxy-D-arabino-heptulosonic acid
7-phosphate: chemical synthesis and isolation from Escherichia coli
auxotrophs, Biochemistry 23 (1984) 4465-4469.