簡易檢索 / 詳目顯示

研究生: 歐陽遠婷
Ou-Yang, Yuan-Ting
論文名稱: The centralizer of a semisimple element in classical groups.
探討古典群中的半單元素的中心化子
指導教授: 潘戍衍
Pan, Shu-Yen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 22
中文關鍵詞: 半單元素中心因子古典群
外文關鍵詞: semisimple element, centralizer, classical group
相關次數: 點閱:34下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Let G be a classical group, X be the semisimple element in G and G(k) be the k-rational points of G, we want to discuss the behavior of centralizers of a semisimple element in classical groups. For G = GL(V) where
    V is a vector space of dimension n, we can explicity describe the centralizer of a semisimple element. When
    G is orthogonal, sympletic, unitary groups of V , let A(X) be the k-algebra generated by X and V (X) = V as A-module, we can define a sesquilinear form F(X) : V (X) × V (X) → A(X) such that it is the subgroup of invertible linear transformations of V preserving F(X).


    1 Introduction of the classical groups 1 1.1 General linear groups . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Sympletic and Orthogonal groups . . . . . . . . . . . . . . . . 2 1.3 Unitary groups . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 The centralizers of the general linear group 5 2.1 GL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 The general linear group . . . . . . . . . . . . . . . . . . . . . 7 3 Classical groups 9 3.1 Propositions of classical grpups . . . . . . . . . . . . . . . . . 9 3.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

    [Bo-] A.Borel, R.Carter, C.W.Curtis, N.Iwahori, T.A. Springer, R. Steinberg, Seminar on Algebraic Groups and Related Finit Groups, Lecture Notes in Mathematics 131, Spring-Verlag New York (1970).
    [Bo-] A.Borel, Linear algebraic groups, W. A. Benjamin, Inc., New York (1969).
    [Jac] Nathan Jacobson, Basic Algebra II, W. H. Freeman and Company San Fransic (1980).
    [Hun] Thomas W. Hungerford, Algebra, Springer-Verlag New York Inc. (1974).
    [Serre] J.-P. Serre, A Course in Arithmetic, Spring-Verlag New York (1973).
    [Well] G. E. Well, On the conjugacy classes in the unitary, sympletic ans orthogonal groups, J. Austr. Math. Soc., vol. 3 (1963). 22

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE