簡易檢索 / 詳目顯示

研究生: 吳昭懿
論文名稱: 以稀土族氧化物作為矽電晶體及鍺電容元件之閘極介電層研究
Study of Rare-Earth Oxide as the Gate Dielectric for Si MOSFETs and Ge MOS Capacitors
指導教授: 巫勇賢
口試委員: 吳永俊
鄭淳護
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2013
畢業學年度: 102
語文別: 中文
論文頁數: 67
中文關鍵詞: 稀土族氧化元素電晶體電容器高介電常數材料
相關次數: 點閱:84下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了符合當前CMOS元件的發展方向,以及克服未來將面對到的瓶頸,在本論文中,我們提出了兩種不同的方式,用來作為提升元件特性的研究方案,其一為使用具有高介電常數的稀土族氧化元素結合結晶態高介電常數材料來提升元件的特性,其二為將稀土族氧化元素整合在具有高載子遷移率的鍺作為元件通道材料,而在實驗的第一個部份我們成功的使用介面層材料Yb2O3整合結晶態高介電常數材料ZrTiO4之堆疊結構當作矽電晶體的閘極介電層,在研究的成果中顯示出元件擁有相當不錯的次臨限擺幅,以及元件在高電場處仍有良好的載子遷移速率,這些性質都指出使用稀土族氧化元素Yb2O3作為介面層搭配結晶態高介電常數材料ZrTiO4這樣的堆疊方式形成的結構具有相當不錯的介面品質。另外一方面,在實驗的第二個部分由於高的載子遷移速率可以提升元件的驅動電流,因此我們以鍺基板為通道材料結合稀土族氧化元素Sm2O3作為介面鈍化層製作電容元件,在研究結果顯示元件擁有良好的頻散特性、低介面缺陷密度,展現出良好的介面品質,證實以Sm2O3作為鍺的介面層能夠有效地保護鍺的介面,且Sm2O3具有高的介電常數值,可將等效氧化層厚度有效的微縮至1nm以下。
    綜合以上結果,我們認為結晶態高介電常數材料ZrTiO4結合稀土族氧化物介面層Yb2O3之堆疊結構作為矽電晶體之閘極氧化層材料以及使用Sm2O3整合在鍺基板兩個提昇元件特性的方向均具有相當大的研究運用空間。


    In order to cater to the current direction of development of CMOS devices, in this paper, we propose two possible ways to improve device performance. In the first topic, we use rare earth oxides Yb2O3 combine with high dielectric constant crystalline materials ZrTiO4 as the gate dielectric to fabricate n- MOSFETs.Electrical characteristics show that the device has low EOT under 1nm, good subthreshold behavior, excellent high field mobility and small amount of interface trap density all indicate that the surface quality between Si and Yb2O3 is very promising.
    In the second topic, the rare earth oxides Sm2O3 was proposed as the gate dielectric to fabricate Ge MOSCAPs. Electrical characteristics show that the device has low EOT, reasonable leakage current value, and small amount of interface trap density, suggest that the Ge surface was effective passivated by Sm2O3.
    Based on the above results, we can conclude that using rare earth oxides Yb2O3 and Sm2O3 as the gate dielectric for both Si-MOSFET and Ge-MOSCAP have considerable potential.

    摘要 i Abstract ii 誌謝 iii 第一章 1 序論 1 1-1研究背景 1 1-2高介電常數材料 2 1-2-1結晶態高介電常數材料 4 1-2-2 稀土族氧化元素 5 1-3 以鍺作為通道材料 5 1-3-1介面層 7 1-4研究動機 8 1-5論文結構 8 第二章 14 文獻回顧 14 第一部份: 以稀土族氧化元素作為介電層之運用 14 2-1以Y2O3/HfO2 堆疊之閘極介電層研究 14 2-2以鑭矽酸鹽作為矽基板介面層之運用 15 2-3以Yb2O3/ZrTiO4 堆疊結構作為介電層研究 15 第二部份:鍺介面鈍化之方法 25 2-4以氧化鍺為基礎的介面層-GeO2 25 2-5以稀土族氧化元素作為介面層-Y2O3 26 第三章 32 實驗規劃原理及製作 32 [主題一] 以Yb2O3結合ZrTiO4 作為介電層之電晶體 32 3-1 TaN/ZrTiO4/Yb2O3/Si MOSFET元件之製作 32 [主題二] 以稀土族氧化元素Sm2O3製作鍺電容元件之研究 38 3-2 TaN/Sm2O3/Ge MOS元件之實驗流程 38 第四章 40 結果與討論 40 [主題一] 以Yb2O3結合ZrTiO4 作為介電層之電晶體 40 4-1-1頻散現象分析 40 4-1-2介面缺陷密度分析 40 4-1-3 IDS-Vg 曲線的特性探討 41 4-1-4 IDS-VDS 曲線的特性探討 42 4-1-5 遷移率(Mobility)的萃取 43 4-1-6可靠度度分析-NBTI 44 [主題二] 以稀土族氧化元素Sm2O3製作鍺電容元件之研究 50 4-2-1 電容特性分析 50 4-2-2 磁滯現象分析 51 4-2-3頻散現象分析 51 4-2-4介面缺陷密度分析 52 4-2-5電流特性分析 53 4-2-6可靠度度分析-NBTI 53 第五章 59 結論與未來展望 59 參考文獻 61 第一章 61 第二章 63 第三章 65 第四章 65 圖表目錄 第一章 圖1.1 摩爾定律 :微處理器電晶體數目與產品年份關係圖 9 圖1.3 使用高介電常數材料降低漏電流之示意圖 10 圖1.4 能帶偏移量示意圖 11 圖1.5 ZrO2三種結晶結構 11 圖1.6 CMOS元件發展藍圖 12 圖1.7 ZrO2與HfO2沉積於鍺基板上之電子顯微影像 12 表1.1 各種高介電常數材料的基本電性 13 第二章 圖2.1.1 電晶體Id-Vg 與Gm-Vg 特性圖 17 圖2.1.2 不同溫度對應電子遷移速率圖 18 圖2.1.3 元件PBTI 特性圖 18 圖2.1.4 不同溫度對應次臨界擺幅特性圖 19 圖2.2.1 實驗設計流程圖示 19 圖2.2.2 不同頻率下的Charge pumping current及對應的介面缺陷密度 20 圖2.2.3 電晶體Id-Vg 特性圖 20 圖2.2.4 電子遷移速率特性圖 21 圖2.3.1 電容元件之頻散現象圖 21 圖2.3.2 介面缺陷密度對閘極電壓圖 22 圖2.3.3 ZrTiO4晶體結構 22 圖2.3.4 ZrTiO4結晶繞射圖 23 圖2.3.5 電容密度對閘極電壓圖 23 圖2.3.6 漏電流密度對閘極電壓圖 24 圖2.4.1 N型鍺電晶體的製作流程圖 27 圖2.4.2 GeO氣體壓力對溫度圖 28 圖2.4.3 介面缺陷密度對能量分布圖 28 圖2.4.4 電子遷移率對參雜濃度分布圖 29 圖2.5.1 Y2O3與Ge介面之TEM圖 29 圖2.5.2 三價稀土族元素鈍化Ge表面示意圖 30 圖2.5.3 介面缺陷密度對能量分布圖 30 圖2.5.4 電子遷移率對參雜濃度分布圖 31 第三章 圖3.1 TaN/ZrTiO4/Y2O3/Si MOSFET元件製程 37 圖3.2 TaN/Y2O3/Ge元件製程 39 第四章 圖4.1.1 TaN/ZrTiO4/Yb2O3/Si元件頻散現象圖 45 圖4.1.2 TaN/ZrTiO4/Yb2O3/Si元件轉導現象圖 46 圖4.1.3 TaN/ZrTiO4/Yb2O3/Si元件ID對Vg圖 46 圖4.1.4 使用Terada-Muta Method萃取元件RSD 47 圖4.1.5 TaN/ZrTiO4/Yb2O3/Si元件ID對VD圖 47 圖4.1.6 TaN/ZrTiO4/Yb2O3/Si元件電子遷移速率對有效電場圖 48 圖4.1.7 與其他文獻在有效電場=1MV下比較圖 48 圖4.1.8 TaN/ZrTiO4/Yb2O3/Si元件PBTI特性圖 49 圖4.1.9 TaN/ZrTiO4/Yb2O3/Si元件PBTI特性圖 49 圖4.2.1 電容-電壓曲線圖 54 圖4.2.2 等效氧化層厚度對Sm2O3物理厚度作圖 55 圖4.2.3 TaN/Sm2O3/Ge元件磁滯特性圖 55 圖4.2.4 TaN/Sm2O3/Ge元件頻散現象圖 56 圖4.2.5 TaN/Sm2O3/Ge元件電導-電壓曲線圖 56 圖4.2.6 TaN/Sm2O3/Ge元件不同溫度漏電流比較圖 57 圖4.2.7 TaN/Sm2O3/Ge元件漏電流比較圖 57 圖4.2.8 TaN/Sm2O3/Ge元件NBTI特性圖 58 表4.1 各種介電層的電性比較 58

    第一章
    [1.1] K. Mistry, M. Armstrong, C. Auth, S. Cea, T. Coan, T. Ghani, T. Hoffman, A. Murthy, J. Sandford, R. Shaheed, K. Zawadzki, K. Zhang, S. Thompson, and M. Bohr, “Delaying forever:uniaxial strained silicon transistors in a 90 nm CMOS technology,” in VLSI Symp. Tech. Dig., 2004, p. 50
    [1.2] J. Robertson, “High dielectric constant gate oxides for metal oxide Si transistors”, Rep. Prog. Phys., vol. 69, 2006, p. 327
    [1.3] Y. Wang, Y. Z. Hu, and E. A. Irene, “Electron cyclotron resonance plasma and thermal oxidation mechanisms of germanium,” J. Vac. Sci. Technol. A, vol. 12, 1994, p. 1309
    [1.4] D. Kuzum, A. J. Pethe, T. Krishnamohan, Y. Oshima, Y. Oshima, Y. Sun, J. P. McVittie, P. A. Pianetta, P. C. McIntyre, and K. C. Saraswat, “Interface-engineered Ge (100) and (111), N- and P-FETs with high mobility,” in IEDM Tech. Dig., 2007, p. 723
    [1.5] Y. Wang, Y. Z. Hu, and E. A. Irene, “Electron cyclotron resonance plasma and thermal oxidation mechanisms of germanium,” J. Vac. Sci. Technol. A, vol. 12, 1994, p. 1309
    [1.6] W. C. Chin, K. Y. Cheong, and Z. Hassan, “Sm2O3 gate dielectriconSisubstrate,” in Materials Science in Semiconductor Processing., 2010,p.303
    [1.7] K. C. Saraswat, C. O. Chui, T. Krishnamohan, A. Nayfeh, and P. McIntyre, “Ge based high performance enhancement in strained-Si n-MOSFET,” in IEDM Tech. Dig., 1994, p. 373
    [1.8] G. G. Fountain, R. A. Rudder, S. V. Hattangady, D. J. Vitkavage, R. J.Markunas, and J. B. Posthill, “Electrical and microstructural characterization of an ultrathin silicon interlayer used in a silicon dioxide/germanium-based MIS structure,” IEEE Electron Device Lett., vol. 24, 1988, p. 1010
    [1.9] Y. Wang, Y. Z. Hu, and E. A. Irene, “Electron cyclotron resonance plasma and thermal oxidation mechanisms of germanium,” J. Vac. Sci. Technol. A, vol. 12, 1994, p. 1309
    [1.10] J. Gregory, E. E. Crisman, L. Pruitt, D. J. Hymes, and J. J. Rosenberg, “Electrical characterization of some native insulators on germanium,” Mat. Res. Soc. Symp. Proc., vol. 76, 1987, p. 307
    [1.11] D. J. Hymes and J. J. Rosenberg, “Growth and materials characterization of native germanium oxynitride thin films on germanium,” J. Electrochem. Soc., vol. 135, 1988, p. 961
    [1.12] Y. Kamata, Y. Kamimuta, T. Ino, and A. Nishiyama, “Direct comparison of ZrO2 and HfO2 on Ge substrate in terms of the realization of ultrathin high-k gate stacks,” Jpn. J. Appl. Phys., vol. 44, 2005, p. 2323,
    [1.13] Y. H. Wu, L. L. Chen, W. C. Chen, C. C. Lin, M. L. Wu, and J. R. Wu, “MOS devices with tetragonal ZrO2 as gate dielectric formed by annealing ZrO2/Ge/ZrO2 laminate,” Microelectron. Eng., vol. 88, 2011, p. 1361,
    [1.14] Y. Liu, S. Shen, L. J. Brillson, and R. G. Gordon, “Impact of ultrathin Al2O3 barrier layer on electrical properties of LaLuO3 metal-oxide-semiconductor devices,” Appl. Phys. Lett., vol. 98, 2011, p. 122907
    [1.15] Delabie, F. Bellenger, M. Houssa, T. Conard, and S. V. Elshocht, “Effective electrical passivation of Ge(100) for high-k gate dielectric,” Appl. Phys. Lett., vol. 91, 2007, p. 082904
    [1.16] X. F. Li, X. J. Liu, W. Q. Zhang, Y. Y. Fu, and A. D. Li, “Comparison of the interfacial and electrical properties of HfAlO films on Ge with S and GeO2 passivation,” Appl. Phys. Lett., vol. 98, 2011, p. 162903
    [1.17] D. Kuzum, A. J. Pethe, T. Krishnamohan, Y. Oshima, Y. Oshima, Y. Sun, J. P. McVittie, P. A. Pianetta, P. C. McIntyre, and K. C. Saraswat, “Interface-engineered Ge (100) and (111), N- and P-FETs with high mobility,” in IEDM Tech. Dig., 2007, p. 723
    [1.18] N. Taoka, W. Mizubayashi, Y. Morita, S. Migita, and H. Ota, “Physical origins of mobility enhancement of Ge p-channel metal-insulator-semiconductor field effect transistors with Si passivation layers,” J. Appl. Phys., vol. 108, 2010, p. 104511

    第二章
    [2.1] F. Zhu, C. Y. Kang, S. J. Rhee, C. H. Choi, S. A. Krishnan, M. Zhang, H. S. Kim, T. Lee, I. Ok, G. Thareja, and J. C. Lee, “Improving carrier mobility and reliability characteristics of high-k NMOSFET by using stacked Y2O3/HfO2 gate dielectric,” Reliability Physics Symposium Proceedings, 2006, p. 659
    [2.2] T. Kawanago, K. Kakushima, P. Ahmet, Y. Kataoka, A. Nishiyama, N. Sugii, K. Tsutsui, K. Natori, T. Hattori and H. Iwai, “(100)- and (110)-oriented nMOSFETs with highly Scaled EOT in La-silicate/Si Interface for Multi-gate Architecture,” Solid-State Device Research Conference, 2012, p. 89
    [2.3] Y. H. Wu, R. J. Lyu, M. L Wu, L, L, Chen, and C. C. Lin, “Integration of amorphous Yb2O3 and crystalline ZrTiO4 as gate stack for aggressively scaled MOS devices,” IEEE Electron Device Lett., vol. 33, 2012, p. 426
    [2.4] C. H. Lee, T. Nishimura, K. Nagashio, K. Kita, and Akira Toriumi “High-electron-mobility Ge/GeO2 n-MOSFETs with two-step oxidation,” IEEE Trans. Electron Devices, vol. 58, no. 5, 2011, p. 1295.
    [2.5] C. X. Li, and P. T. Lai, “Wide-bandgap high-k Y2O3 as passivating interlayer for enhancing the electrical properties and high-field reliability of n-Ge metal-oxide-semiconductor capacitors with high-k HfTiO gate dielectric,” Appl. Phys. Lett., vol. 95, 2009, p. 022910
    [2.6] T. Nishimura, C. H. Lee1, T. Tabata, S. K. Wang, K. Nagashio, K. Kital, and A. Toriumi, “High-electron-mobility Ge n-channel metal–oxide–semiconductor field-effect transistors with high-pressure oxidized Y2O3,” Appl. Phys. Express, 2, p. 071404, 2011
    [2.7] C. H. Lee, T. Nishimura, T. Tabata, S. K. Wang, K. Nagashio, K. Kita, and A. Toriumi, “Ge MOSFETs performance: impact of Ge interface passivation,” in IEDM Tech. Dig., 2010, p. 416
    第三章

    [3.1] S. Abermann, O. Bethge, C. Henkel, and E. Bertagnolli, “Atomic layer deposition of ZrO2/La2O3 high-k dielectrics on germanium reaching 0.5 nm equivalent oxide thickness,” Appl. Phys. Lett. 94, 2009, p.262904
    [3.2] T. Nishimura, C. H. Lee1, T. Tabata, S. K. Wang, K. Nagashio, K. Kital, and A. Toriumi, “High-electron-mobility Ge n-channel metal–oxide–semiconductor field-effect transistors with high-pressure oxidized Y2O3,” Appl. Phys. Express, 2, 2011, p. 071404
    第四章
    [4.1] K. Terada, and H. Muta, “A new method to determine effective MOSFET channel length,” Jap. J. Appl. Phys., vol. 18, 1979, p. 953
    [4.2] L.Å. Ragnarsson, T. Chiarella, M. Togo, T. Schram, P. Absil, T. Hoffmann,” Ultrathin EOT high-κ/metal gate devices for future technologies: Challenges, achievements and perspectives.” Microelectron. Eng. vol 88, p.1317
    [4.3] J. Huang, D. Heh, P. Sivasubramani, P.D. Kirsch, G. Bersuker, D.C. Gilmer, M.A. Quevedo-Lopez, M.M. Hussain, P. Majhi, P. Lysaght, et al. “Gate first high-k/metal gate stacks with zero SiOx interface achieving EOT = 0.59 nm for 16 nm application.” In Proceedingsof VLSI Technology Symposium, 2009, p. 34
    [4.4] T. Ando, M. Copel, J. Bruley, M.M. Frank, H. Watanabe, V. Narayanan, “Physical origins of mobility degradation in extremely scaled SiO2/HfO2 gate stacks with la and al induced dipoles.” Appl. Phys. Lett.,vol. 96, 2010, p.132904
    [4.5] T. Kawanago, Y. Lee, K. Kakushima, P. Ahmet, K. Tsutsui, A. Nishiyama, N. Sugii, K. Natori, T. Hattori, H. Iwai, ” EOT of 0.62 nm and high electron mobility in La-silicate/Si structure based nMOSFETs achieved by utilizing metal-inserted poly-Si stacks and annealing athigh temperature.” IEEE Trans. Electron Devices, vol. 59, 2012 , p.269
    [4.6] K. Choi, H. Jagannathan, C. Choi, L. Edge, T. Ando, M. Frank, P. Jamison, M. Wang, E. Cartier, S. Zafar, et al. “Extremely scaled gate-first high-k/metal gate stack with EOT of 0.55 nm using novel interfacial layer scavenging techniques for 22 nm technology node and beyond.” In Proceedings of VLSI Technology Symposium, Kyoto, 2009, p. 138
    [4.7] Q. Xie, S. Deng, M. Schaekers, D. Lin, M. Caymax, A. Delabie, Y. Jiang, X. Qu, D. Deduytsche, and C. Detavernier, “High-performance Ge MOS capacitors by O2 plasma passivation and O2 ambient annealing,” IEEE Electron Device Lett., vol. 32, 2011, p. 1656
    [4.8] Q. Xie, J. Musschoot, M. Schaekers, M. Caymax, A. Delabie, X. P. Qu, Y. L. Jiang, Sven Van den Berghe, J. Liu, and C. Detavernier, “Ultrathin GeOxNy interlayer formed by in situ NH3 plasma pretreatment for passivation of germanium metal-oxide-semiconductor devices,” Appl. Phys. Lett., vol. 97, 2010, p. 222902
    [4.9] R. Zhang, P. C. Huang, N. Taoka, M. Takenaka, and S. Takagi School of Engineering, “High mobility Ge pMOSFETs with 0.7 nm ultrathin EOT using HfO2/Al2O3/GeOx/Ge gate stacks fabricated by plasma post oxidation,” in VLSI Symp. Tech. Dig., 2012, p. 161
    [4.10] J.P. Xu, X. Zou, P.T. Lai, C.X. Li, and C.L. Chan, “Use of water vapor for suppressing the growth of unstable low-k interlayer in HfTiO gate-dielectric Ge metal-oxide-semiconductor capacitors with sub-nanometer capacitance equivalent thickness,” Thin Solid Films, vol. 94, 2009 , p. 2892
    [4.11] C. X. Li, and P. T. Lai, “Wide-bandgap high-k Y2O3 as passivating interlayer for enhancing the electrical properties and high-field reliability of n-Ge metal-oxide-semiconductor capacitors with high-k HfTiO gate dielectric,” Appl. Phys. Lett., vol. 95, 2009, p. 022910
    [4.12] M. K. Bera, C. Mahata1, A. K. Chakraborty, S. K. Nandi, J. N. Tiwari, J. Y. Hung, and C. K. Maiti, “TiO2/GeOxNy stacked gate dielectrics for Ge-MOSFETs,” Semicond. Sci. Technol., 2007, p. 1352

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE