簡易檢索 / 詳目顯示

研究生: 李鴻志
論文名稱: 在網路模型中探討其分支度的相關性
A Configuration Model with Non-zero Degree Correlations
指導教授: 李端興
口試委員: 張正尚
黃之浩
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 30
中文關鍵詞: 分支度群聚效應
相關次數: 點閱:52下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們這篇論文是隨機網路的一種延伸,目的是根據我們的需要在網路中來產生所需的分支度相關性,我們可以使用任意的分布,這個模型讓我們可以產生特定的群聚係數,我們用模擬來驗證我們的數學分析是正確的,我們也展示了經由改變參數q來簡單的調整群聚係數


    The main objective of this paper is to present an extension of the classical configuration model. Like a classical configuration model, the extended configuration model allows
    users to specify an arbitrary degree distribution. In addition, the model allows users to specify a positive or a negative assortative coefficient. We derive a closed form for the assortative coefficient of this model. We verify our result with simulations. We show that the assortative coefficient is tunable simply by changing the control parameter q.

    Contents List of Figures 1 Introduction 2 Assortativity Coefficient 3 Construction of a Random Network 4 Assortative Mixing and Disassortative Mixing 5 Numerical and Simulation Results 6 Conclusions Bibliography

    [1] A.-L. Barab´asi and R. Albert, “Emergence of Scaling in Random Networks,” Science,
    286, 509-512, 1999.
    [2] E. A. Bender and E. R. Canfield, “The asymptotic number of labelled graphs with
    given degree sequences,”J. Comb. Theory, Ser. A 24, 296, 1978.
    [3] M. Bogu˜n´a and R. Pastor-Satorras, “Epidemic spreading in correlated complex networks,”
    Physical Review E, 66, 047104, 2002.
    [4] M. Bogu˜n´a and R. Pastor-Satorras, “Class of correlated random networks with hidden
    variables,” Physical Review E, 68, 036112, 2003.
    [5] M. Bogu˜n´a, R. Pastor-Satorras, and A. Vespignani, “Absence of epidemic threshold
    in scale-free networks with degree correlations,” Physical Review Letters, Vol. 90,
    No. 2, 028701, 2003.
    [6] V. M. Egu´ıluz and K. Klemm, “Epidemic threshold in structured scale-free networks,”
    Physical Review Letters, Vol. 89, No. 10, 108701, 2002.
    [7] Erd˝os and R´enyi , “On Random Graphs,” Publicationes Mathematicicae, 6, 290–297,
    1959.
    [8] N. Litvak and Remco van der Hofstad, “Degree-degree correlations in random graphs
    with heavy-tailed degrees,” 2012.
    [9] M. Molloy and B. Reed, “A critical point for random graphs with a given degree
    sequence,” Random Struct. Alg. 6, 161-179, 1995.
    [10] Y. Moreno, J. B. G´omez, and A. F. Pacheco, “Epidemic incidence in correlated
    complex networks,” Physical Review E, 68, 035103(R), 2003.
    [11] M.E.J. Newman, “Mixing patterns in networks,” Phys. Rev. E 67, 026126,2003.
    [12] M.E.J. Newman, “Networks: An Introduction,” Oxford, 2010.
    [13] M. Schl¨apfer and L. Buzna, “Decelerated spreading in degree-correlated networks,”
    Physical Review E, 85, 015101(R), 2012.
    [14] A. V´azquez and Y. Moreno, “Resilence to damage of graphs with degree correlations,”
    Physical Review E, 67, 015101(R), 2003.
    [15] R. Xulvi-Brunet and I. M. Sokolov, “Changing correlations in networks: assortativity
    and dissortativity,” Acta Physica Polonica B, Vol. 36, No. 5, 1431-1455, 2005.
    [16] D. J. Watts and S. H. Strogatz, “Collective Dynamics of ’Small-World’ Networks,”
    Nature, 393, 440-442, 1998.
    [17] J. Zhou, X. Xu, J. Zhang, J. Sun, M. Small, and J.-A. Lu, “Generating an assortative
    network with a given degree distribution,” Intern. J. of Bifuration and Chaos, Vol.
    18, No. 11, 3495-3502, 2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE