研究生: |
劉紫璇 Law Zhi Xuan |
---|---|
論文名稱: |
氣溶膠法製備雙功能材料應用於整合型碳捕捉與利用之研究 Integrated Carbon Capture and Utilization Using Aerosol-based Synthesized Dual Functional Material |
指導教授: |
蔡德豪
TSAI, DE-HAO |
口試委員: |
呂世源
LU, SHIH-YUAN 潘詠庭 Pan, Yung-Tin 陳炳宏 Bing-Hung Chen 陳朝煌 Chao Huang, Chen |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 英文 |
論文頁數: | 144 |
中文關鍵詞: | 氣溶膠合成法 、雙功能材料 、化學迴圈 、減碳 、合成氣 、氫氣 |
外文關鍵詞: | Aerosol-based synthesis, dual functional material, chemical looping, CO2 reduction, syngas production, H2 production |
相關次數: | 點閱:136 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
化學迴圈技術為實現減碳化學品生產提供了具潛力的解決方案。其中,整合型碳捕捉與利用技術(ICCU),透過結合CO2化學吸附與後續化學轉化步驟,展現出一種高效的減碳策略。在ICCU過程中,兼具CO2吸附劑與活性金屬特性的雙功能材料(DFM)是實現高效捕捉與轉化性能的關鍵。氣溶膠法提供一種可控制備雙功能材料的合成途徑。在第一項研究中,探索一種嶄新的ICCU概念,將鈣迴圈(CaL)與甲烷乾式重組(DRM)整合,並透過氣溶膠法合成由CaO(CO2吸附劑)、Ni(活性金屬)與CeO2(助劑)所組成的DFM作爲觸媒。此材料在相對低溫(600 °C)下展現出優異的CaL-DRM循環表現,具備高CO2吸附效率(12.1 mmolCO2/gCaO)與高CO2轉換率(97.2%),主要歸因於其均勻分佈的混合型奈米結構與豐富的Ca-Ni-Ce界面。延續此成果,第二項研究將ICCU應用拓展至甲烷雙重組(BRM)。研究指出,蒸氣的引入提高了反應起始溫度並促進Ca(OH)2的生成,嚴重抑制了CO2轉換效率。為克服此挑戰,第三項研究於Ni-CaO材料中引入少量Pd,以強化CaL-BRM之效能。該材料同樣透過氣溶膠法合成,在600 °C下展現優異的活性與循環穩定性,具備良好CO2捕捉能力(12.0 mmolCO2/gCaO)及高BRM表現(CO2轉換率 > 98%;H2/CO ≈ 2)。密度泛函理論(DFT)計算顯示,Pd可顯著降低關鍵反應步驟的活化能,即使在含水蒸氣的副反應條件下也能維持良好催化表現。為進一步拓展化學迴圈應用範疇,第四項研究建立了結合甲烷熱裂解與CO2輔助觸媒再生的串聯式系統,採用氣溶膠法製備Ni–FeOx雙金屬DFM。該觸媒具備大量Ni–FeOx活性界面,在600 °C下展現出高甲烷轉換率(3.33 mmol/gcat·min)、CO2轉換率(1.66 mmol/gcat·min)與氫氣產率(6.66 mmol/gcat·min),同時達成99.97%的碳移除效率與淨負碳排放。綜合以上研究,驗證化學迴圈與ICCU系統在減碳、氫氣與合成氣生產方面之高效與永續潛力,同時凸顯材料設計在ICCU技術發展中的關鍵重要性。
Chemical looping-based approaches are attractive for CO2 reduction-based chemical production. Among them, integrated carbon capture and utilization (ICCU), which couples CO2 capture via chemisorption with a subsequent chemical conversion step, offers a highly efficient strategy for mitigating carbon emissions. In ICCU, dual functional materials (DFMs) that combine the properties of both CO2 adsorbents and active catalytic metals are essential to achieve high capture and conversion efficiencies. An aerosol-based synthetic approach has emerged as a promising method for the controlled fabrication of the DFMs. In the first study, a novel ICCU concept was explored by integrating calcium looping (CaL) with methane dry reforming (DRM), enhanced using an aerosol DFM composed of CaO (CO2 adsorbent), Ni (DRM catalyst) and CeO2 (promoter). This material showed significant improvements in cyclic CaL-DRM performance, with high CO2 uptake efficiency (12.1 mmolCO2/gCaO) and high CO2 conversion (97.2%) at a relatively low temperature (600 °C), mainly attributed to the homogeneously-distributed hybrid nanostructure with abundant Ca-Ni-Ce interfaces, demonstrating the potential of the aerosol-based synthesis method. Building upon the success of CaL-DRM, the second study extended the ICCU concept to methane bi-reforming (BRM) using CaO-Ni/CeO2 as the DFM. This study highlighted challenges, such as the presence of steam increased the reaction onset temperature and led to Ca(OH)2 formation, which significantly hindered the CO2 conversion. To address these limitations, the third study introduced a Pd-promoted Ni-CaO-based DFM for the CaL-BRM process. This innovative material, developed via the aerosol synthetic approach, exhibited high activity and cyclic stability, maintaining effective CO2 capture (12.0 mmolCO2/gCaO) and excellent BRM performance (> 98% CO2 conversion; H2/CO = 2) at 600 °C. Density functional theory (DFT) calculations supported these findings by showing that palladium significantly lowered the activation energy of key reaction steps, such as CH* dissociation and H2O activation, thereby enhancing catalytic performance even in the presence of steam-related side reactions. To further explore chemical looping strategies beyond calcium looping and methane reforming pathways, the fourth study developed a tandem process integrating methane decomposition with CO2-assisted catalyst regeneration, using a bimetallic Ni–FeOx-based DFM. This catalyst, synthesized via the aerosol-based synthetic method, generated abundant Ni–FeOx interfaces that enabled high methane (3.33 mmol/gcat·min) and CO2 conversion rates (1.66 mmol/gcat·min) and a high H2 production rate (6.66 mmol/gcat·min) at 600 °C. Besides, this system achieved a 99.97% carbon removal efficiency and a net negative CO2 emission. Together, these studies underscore the potential of chemical looping and ICCU systems as efficient and sustainable routes for carbon reduction, hydrogen and syngas production, while also offering valuable insights into the rational design of advanced dual functional materials synthesized via an aerosol-based approach.