研究生: |
林柏霖 Lin, Po-Ling |
---|---|
論文名稱: |
物種與系統演化貝它多樣性之稀釋與預測 Rarefaction and Extrapolation of Species and Phylogenetic Beta Diversity |
指導教授: |
趙蓮菊
Chao, Anne |
口試委員: |
邱春火
Chiu, Chun-Huo 林宜靜 Lin, Yi-Ching |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 統計學研究所 Institute of Statistics |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 169 |
中文關鍵詞: | 貝它多樣性 、稀釋與外插曲線 |
外文關鍵詞: | Beta Diversity, Rarefaction and Extrapolation curve |
相關次數: | 點閱:58 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
生態學家探討多群落生物多樣性研究時,常常會考慮各種相似(相異)性指標來探討群落間的相似(相異)性,β多樣性指標則是最常被用來討論群落之間的相似(相異)性指標之一。一般的β多樣性指標僅考慮各群落中各物種的相對豐富度,為了將物種與物種之間的差異納入考量,本文也將討論以考慮物種間的演化歷史的系統演化β多樣性指標族之相關議題。
傳統的最大概似估計法在估計物種和系統演化β多樣性指標族常常會有高估的情況產生。為了改善此問題,本文利用分別估計γ和α多樣性指標族提出了此兩指標族新的估計方法,使得其高估的情況有所改善。此外,為了將各地區的數據標準化到相同的取樣基準來進行比較,本文提出物種與系統演化β多樣性指標族之稀釋與預測函數,並且利用統計推論提出此兩指標族之稀釋與預測函數的估計量。
為比較本文提出的估計方法與傳統的最大概似估計量,本文藉由電腦模擬進行驗證,結果顯示本文建議的估計量不管在平均偏誤、樣本均方根誤差皆有較佳的表現,可以驗證本文提出的估計方法為可靠的估計。最後利用哥斯大黎加雨林和義大利沙丘植披資料進行實例分析並分別展示本文提出之估計量在真實資料上的實際應用,並透過R語言將本文所提及的系統演化多樣性指標寫成互動式網頁PhD Online。
When there are multiple communities, ecologists often measure similarity or dissimilarity among communities by utilizing various similarity or dissimilarity measures. Beta diversity quantifies dissimilarity among communities. Species beta diversity only considers species relative abundances. In order to take species evolutionary history into account, this thesis also consider phylogenetic beta diversity.
Since the observed species and phylogenetic beta diversity always overestimates the theoretical true value, this thesis develops new estimators by estimating species and phylogenetic gamma and alpha diversity respectively. On the other hand, in order to compare dissimilarity based on the different sampling effort, the thesis derives both theoretical formulas and analytic estimators for rarefaction and extrapolation of species and phylogenetic beta diversity.
In order to compare the proposed new beta diversity estimators with traditional empirical method, computer simulation results are reported. The proposed estimators exhibit substantial improvement in terms of bias and RMSE. The proposed estimators are also applied to the analysis of rain forest data of Costa Rica, and to Italian dunes data. Online software Phylogenetic Diversity (PhD Online) is developed to implement all proposed measures and estimators.
[1] Allen, B., Kon, M. and Bar-Yam, Y. (2009). A new phylogenetic diversity measure generalizing the Shannon index and its application to phyllostomid bats. The American Naturalist, 174, 236-243.
[2] Carboni, M., Carranza, M.L., Acosta, A.T.R., (2009).Assessing conservation status on coastal dunes: A multiscale approach Landscape and Urban Planning, 91, 17–25
[3] Chao, A. (1984). Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics, 11, 265-270.
[4] Chao, A. (2005). Species estimation and applications. Encyclopedia of Statistical Sciences, 12, 7907-7916.
[5] Chao, A., Chiu, C. H. and Jost, L. (2010). Phylogenetic diversity measures based on Hill numbers. Philosophical Transactions of the Royal Society B., 365, 3599-3609.
[6] Chao, A. and Jost, L. (2012). Coverage-based rarefaction: standardizing samples by completeness rather than by size. Ecology, 93, 2533-2547.
[7] Chao, A., Wang, Y. T. and Jost, L. (2013). Entropy and the species accumulation curve: a novel estimator of entropy via discovery rates of new species. Methods in Ecology and Evolution, 4, 1091-1110.
[8] Chiu, C. H., Wang, Y. T., Walther, B. A. and Chao, A. (2014). An improved non-parametric lower bound of species richness via the Good-Turing frequency formulas. Biometrics, 70, 671-682.
[9] Chao, A., Gotelli, N. G., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K. and Ellison, A. M. (2014). Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species biodiversity studies. Ecological Monographs, 84, 45-67.
[10] Chao, A. and Jost, L. (2015). Estimating diversity and entropy profiles via discovery rates of new species. Methods in Ecology and Evolution, 6, 873-882.
[11] Chao, A., Chiu, C. H., Hsieh, T. C., Davis, T., Nipperess, D. and Faith, D. (2015). Rarefaction and extrapolation of phylogenetic diversity. Methods in Ecology and Evolution, 6, 380-388.
[12] Chiu, C.-H., Jost, L. and Chao, A. (2014). Phylogenetic beta diversity, similarity, and differentiation measures based on Hill numbers. Ecological Monographs, 84, 21-44
[13] Chazdon, R.L., Colwell, R.K., Denslow, J.S., Guariguata, M.R. (1998). Statistical methods for estimating species richness of woody regeneration in primary and secondary rain forests of NE Costa Rica, Parthenon Publishing, Paris, France, 20, 285–309.
[14] Efron, B. (1979). Bootstrap Methods: Another look at the jackknife. The Annals of Statistics, 7, 1-26.
[15] Faith, D. P. (1992). Conservation evaluation and phylogenetic diversity. Biological conservation, 61, 1-10.
[16] Good, I. J. (1953). The population frequencies of species and the estimation of population parameters. Biometrika, 40, 237-264.
[17] Hill, M. O. (1973). Diversity and evenness: A unifying notation and its consequences. Ecology, 54, 427-432.
[18] Hsieh, T.C. and Chao, A. (2016). Rarefaction and extrapolation: making fair comparison of abundance-sensitive phylogenetic diversity among multiple assemblages. Systematic Biology, 66, 100-111.
[19] Jost, L. (2007). Partioning diversity into independent alpha and beta components. Ecology 88, 2427-2439.
[20] Jost, L., Chao, A. and Chazdon, R. L. (2011). Compositional similarity and beta diversity. In Biological Diversity: Frontiers in Measurement and Assessment, pp. 66-84 (eds A. Magurran & B. McGill) Oxford: Oxford University Press.
[21] MacArthur, R., Recher, H., Cody, M. (1966). On the relation between habitat selection and species diversity. Amer. Natur. 100, 319-332.
[22] Pielou, E. C. (1975). Ecology Diversity. J. Wiley and Sons, New York.
[23] Rao, C. R. (1982). Diversity and dissimilarity coefficients: a unified approach. Theoretical population biology, 21, 24-43.
[24] Ricotta, C., Bacaro, G., Marignani, M., Godefroid, S. & Mazzoleni, S. (2012). Computing diversity from dated phylogenies and taxonomic hierarchies: does it make a difference to the conclusions? Oecologia 170, 501–506
[25] Routledge, R. (1979). Diversity indices: which ones are admissible? Theoretical Population Biology, 76, 503-515
[26] Shannon, C. E. (1948). The mathematical theory of communication. Bell System Technical Journal, 27, 379-423.
[27] Shen, T, J., Chao, A. and Lin, J. F. (2003). Predicting the number of new species in a further taxonomic sampling. Ecology, 84, 798-804.
[28] Simpson, E. H. (1949). Measurement of diversity. Nature, 163, 688-688.
[29] Whittaker, R.H. (1972). Evolution and measurement of species diversity. Taxon 23, 213-251.
[30] 謝宗震 (民 102). 生物多樣性稀釋與預測 趙蓮菊指導 新竹市國立清華大學統計學研究所博士論文