簡易檢索 / 詳目顯示

研究生: 朱晉緯
Chu, Chin-Wei
論文名稱: 改進同步器之平均故障間隔時間
Improving synchronizer’s mean time between failures
指導教授: 張彌彰
Chang, Mi-Chang
口試委員: 馬席彬
Ma, Hsi-Pin
盧向成
Lu, Shiang-Cheng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 85
中文關鍵詞: 亞穏態同步器積體電路平均故障間隔時間
外文關鍵詞: intergrated, MTBF
相關次數: 點閱:69下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著半導體技術的持續演進,單一晶片上能透過放置越來越多個電晶體來實做出更加複雜的功能。這些複雜的功能通常被分割成可能有不同時脈頻率以及供給電壓的子系統來達到更好的效能。然而,如果訊號在數個不同的時脈區域中傳遞,要直接檢查時間限制是不可能的。為了解決可靠度的問題,同步器被用來同步這些訊號,以此來減少傳遞錯誤。
    平均故障間隔時間(MTBF)被用來表徵同步器的穩定度,而解析時間常數(τ)對於平均故障間隔時間的改進是個重要的參數,因為越小的解析時間常數能產生越長的平均故障間隔時間。我們開發出一個能由時間窗口方程式推導出的模擬方法來精準地測量解析時間常數,使用這個方法我們可以發現解析時間常數由同步器的第一級所主宰。我們使用HSPICE配合TSMC 65LP的製程來模擬不同的同步器,且找出他們的解析時間常數對於各項效應(溫度、供給電壓、製程變異、混合門檻電壓製程)的敏感度。除此之外,我們也使用兩個被稱為MPDP和MPDAP的優值來比較不同的同步器的整體效能。最後但同樣重要的是,使用這些我們獲得的知識,已經改良出相比於其他已知研究結果少了一半的解析時間常數。


    As the semiconductor technology continues to evolve, more and more transistors can be placed on a single chip with more complex functions implemented. These complex functions are usually divided into sub-systems with possibly different clock frequencies and power supplies to achieve better performance. However it’s impossible to check timing constraints directly if signals are transmitted across different clock domains. To deal with this reliability issues, synchronizers are used to synchronize these cross-domain signals to minimize transmission errors.
    Mean-time-between-failures (MTBF) is used to characterize reliability of synchronizers. Resolution time constant (τ) is an important parameter for MTBF improvement because smaller τ results in larger MTBF. We develop a simulation method which can be derived from timing window equation to measure τ accurately. Using this method we can find that it is dominated by the first stage of synchronizer. We use TSMC 65LP technology to simulate various synchronizers and find their sensitivities with repect to temperature, supply voltage, process variation, and mix V_th process with HSPICE. In additional we use two Figures of Merits (FOM) called MPDP and MPDAP to compare overall performance of different synchronizers. Last but not least, using the knowledge gained we have improved τ by more than 50% compared to the known published results.

    摘要 i Abstract ii 致謝 iii List of Figures vii List of Tables xi Chapter 1 INTRODUCTION 1 1.1 Background 1 1.2 Motivation 1 1.3 Thesis Organization 2 Chapter 2 METASTABILITY 3 2.1 Definition of Metastability 3 2.2 Metastability Generation 5 2.2.1 Timing Constraints of D Flip-flop 5 2.2.2 Metastability Behavior 8 2.3 Metastable Properties 10 2.3.1 Timing Window 10 2.3.2 Mean Time Between Failures 12 2.4 Related Works 13 2.4.1 On-chip Metastability Measurement Circuit 14 2.4.2 Shorting Node and Extended Node Method 15 2.5 Synchronizer 19 2.6 Published MTBF Models 23 Chapter 3 SIMULATIONS 25 3.1 Proposed Simulation Method 25 3.1.1 Derivation of the Simulation Method 25 3.1.2 The Non-ideal Rough Region in Simulation Curve 27 3.1.3 Simulation Settings 29 3.2 τ Model 32 3.3 Parameterize τ with the Components in DFF 33 3.3.1 Transmission Gate 34 3.3.2 Forward Inverter 35 3.3.3 Backward Inverter 38 3.3.4 Dominant Effect 40 3.4 PVT Analysis 43 3.4.1 Temperature Effect 43 3.4.2 Design Corner Effect 45 3.4.3 Supply Voltage Effect 45 3.5 Mixed Vth Process 46 Chapter 4 PROPOSED DFF SIMULATIONS 50 4.1 Effect Analysis 50 4.2 Different Storage Element Application 55 4.2.1 Quatro Cell 55 4.2.2 PDFF with Quatro Cell Simulation 56 4.3 NP Fighting Improvement 58 Chapter 5 FIGURE OF MERIT ANALYSIS 63 5.1 FOM of different DFF 63 5.2 Post-layout Simulations 74 Chapter 6 CONCLUSIONS AND FUTURE WORK 79 6.1 Conclusions 79 6.2 Future work 82 REFERENCES 83

    [1] C. L. Portmann and H. Y. Meng, “Metastability in CMOS library elements in reduced supply and technology scaled applications,” IEEE J. Solid-State Circuits, vol. 30, no. 1, pp. 39–46, Jan. 1995.
    [2] J. Jones, S. Yang and M. Greenstreet, “Synchronizer behavior and analysis,” Proc. IEEE Int. Symposium on Asynchronous Circuits and Systems (ASYNC), pp. 117 – 126, 2009.
    [3] R. Ginosar, “Metastability and synchronizers: A tutorial,” IEEE Design Test Comput., vol. 28, no. 5, pp. 23–35, Sep. /Oct. 2011.
    [4] S. Beer, and R. Ginosar, “A new 65nm LP metastability measurement test circuit,” Electrical and Elctronic Engineers in Israel, 2012 IEEE 27th Convention of, 2012, pp. 1-4.
    [5] S. Beer and R. Ginosar, “An extended metastability simulation method; Extended node short simulation (ENSS),” in Electrical and Electronics Engineers in Israel, 2012 IEEE 27th Convention of, 2012, pp. 1-4.
    [6] S. Beer, J. Cox, T. Chaney and D. M. Zar, “MTBF bounds for multistage synchronizers,” in Proc. IEEE Int. Symp. Asynchron. Circuits Syst. (ASYNC), May 2013, pp. 158–165.
    [7] L. Kleeman and A. Cantoni, "Metastable behavior in Digital Systems,” IEEE Design & Test of Computers, 4(6), 4-19, 1987.
    [8] T.J. Gabara, G.J. Cyr and C.E. Stroud, "Metastability of CMOS master-slave flip-flops", IEEE Transactions on Circuits and Systems II - Analog and Digital Signal Processing, 734-740, 1992.
    [9] C. Brown and K. Feher, "Measuring metastability and its effect on communication signal processing systems,” IEEE Transactions on Instrumentation and Measurement, 46(1), 1997.
    [10] C. Myers, E. Mercer and H. Jacobson, “Verifying synchronization strategies,” in Formal Methods for Globally Asynchronous Locally Synchronous (GALS) Architecture, 2003.
    [11] D. Kinniment, “Synchronization and Arbitration in Digital Systems,” Wiley, 2007.
    [12] D. Chen, D. Singh, "A comprehensive approach to modeling, characterizing and optimizing for metastability in FPGAs," FPGA 2010
    [13] S. Beer, R. Ginosar, M. Priel, R. Dobkin and A. Kolodny, "The Devolution of synchronizers," in Electrical and Electronics Engineers in Israel (IEEEI), 2010
    [14] Star-Hspice Manual, Release 2000.4, December 2000
    [15] T. KacprzakL and A. Albicki, “Analysis of metastable operation in RS CMOS flip-flops,” J. Solid-State Circuits, vol. SSC-22, pp. 57–64, Feb. 1987.
    [16] L. Kim and R. Dutton, “Metastability of CMOS latch/flip-flop,” J. Solid-State Circuits, vol. 25, pp. 942–951, Aug. 1990.
    [17] D. J. Kinniment, A. Bystrov and A. V. Yakovlev, “Synchronization circuit performance,” IEEE J. Solid-State Circuits, vol. 37, no. 2, pp. 202–209, Feb. 2002.
    [18] M. Buckler, A. Vaidya, X. Liu and W. Burleson, “Dynamic Synchronizer Flip-Flop Performance in FinFET Technologies,” Eighth IEEE/ACM International Symposium on Networks-on-Chip (NoCS), 2014.
    [19] S. Beer and R. Ginosar, “A Model for Supply Voltage and Temperature Variation Effects on Synchronizer Performance,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 11, pp. 2461-2472, Nov. 2015.
    [20] D. Li, P. Chuang and M. Sachdev, “Comparative Analysis and Study of Metastability on High-Performance Flip-Flops,” ISQED, pp. 853–860, March 2010.
    [21] D. Li, D. Rennie, P. Chuang, D. Nairn and M. Sachdev, “Design and Analysis of Metastable-Hardened and Soft-Error Tolerant High Performance, Low-Power Flip-Flops,” ISQED, pp. 583–590, March 2011.
    [22] David Rennie, David Li, Manoj Sachdev, Bharat Bhuva, Srikanth Jagannathan, ShiJie Wen and Rick Wong, “Performance, Metastability and Soft-Error Robustness Tradeoffs for Flip-Flops in 40nm CMOS,” IEEE Transactions on Circuits and Systems, Vol. 59, pp. 1626-1634, Aug. 2012.
    [23] Salomon Beer, Ran Ginosar, Michael Priel, Rostislav (Reuven) Dobkin and Avinoam Kolodny, “An on-chip metastability measurement circuit to characterize synchronization behavior in 65nm,” IEEE International Symposium on Circuits and Systems (ISCAS), 2011

    QR CODE