簡易檢索 / 詳目顯示

研究生: 蕭仁傑
Hsiao, Jen-Chieh
論文名稱: 脈衝式間歇振盪EHD噴流之增強散熱技術研究
Enhancement of heat transfer by means of oscillating EHD jet
指導教授: 許文震
王啟川
口試委員: 許文震
王啟川
王訓忠
陳炎洲
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 107
中文關鍵詞: 電液動力學離子風間歇噴流熱傳增強
外文關鍵詞: EHD
相關次數: 點閱:86下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗主要是討論利用電液動力學(Electrohydrodynamics, EHD)之技術來提升散熱能力。其原理為在一針狀電極上通一高壓電,使電極附近的空氣解離進而產生離子風,以達到增強散熱能力之目的。而在本實驗,是透過輸入一不同波形之訊號進入高壓電源供應器產生不同波形及頻率的高電壓,使電極端產生之離子風有類似間歇噴流現象的效果。希望能利用間歇噴流來讓熱邊界層造成擾動,使邊界層重複消失後重組的狀態,進而觀察其與穩態高電壓持續輸入來比較。透過實驗結果可知,對單根電極狀態而言,若僅考慮不同波形之最大電壓,則在相同電壓下穩定持續輸出效果最佳。但因工業考慮上多從功率或有效電壓(Vrms)來看,則不同波形輸入之效果均較穩態持續輸入為佳。在不同的間距下,存在最佳效果的頻率亦會變動,在本實驗室中用頻率0.5、1、1.5及2Hz。在本實驗中,對水平間距5mm而言,0.5Hz狀況下效果最佳。對水平間距10mm而言,頻率1Hz或1.5Hz之效果較佳。對間距15mm而言,頻率2Hz效果最佳。此外,對相同的最大輸入電壓情況下,步階函數輸入之情況會優於正弦函數輸入,而三角波形輸入最差,其原因與波形的有效性(RMS)有關。


    摘要 I 誌謝 II 目錄 III 圖表目錄 V 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 4 1-2-1 電暈現象之文獻回顧 4 1-2-2 EHD散熱應用之文獻回顧 6 1-2-3 EHD側向進氣散熱之文獻回顧 9 1-2-4 EHD濕度影響之文獻回顧 11 1-2-5 間歇噴流之文獻回顧 12 1-2-6 非穩態之高壓電源輸入對EHD之影響 13 第二章 原理介紹 16 2-1 EHD概論 16 2-2 EHD運作原理簡介 17 2-3 電暈現象 18 2-3-1 電暈風 18 2-3-2 正電暈下離子的運動行為 19 2-3-3 負電暈下離子的運動行為 20 2-3-4 粒子間碰撞之行為 22 2-4 火花電壓 23 第三章 實驗設備與方法 25 3-1 實驗目的 25 3-2 實驗設備 25 3-3 實驗校正 35 3-3-1 熱電偶校正 35 3-4 實驗與分析之方法 37 3-4-1 自然對流實驗與分析 37 3-4-2 EHD實驗方法與分析 38 3-5 實驗設置 39 第四章 實驗數據與討論 42 4-1 步階波形 (Step) 44 4-1-1 不同頻率對步階函數輸入高壓電壓狀況之影響 45 4-1-1-1 電極與加熱平板間距5mm之情況 45 4-1-1-2 電極與加熱平板間距10mm之情況 54 4-1-1-3 電極與加熱平板間距15mm之情況 63 4-1-2 不同間距下對步階函數輸入高壓電極之影響 72 4-2 其他特殊波形 78 4-2-1 正弦函數(Sin波) 78 4-2-2 三角波形 86 4-2-3 不同波形之比較 93 4-2-4 不同瓦數對不同波形輸入之影響 96 第五章 結論與未來展望 102 5-1 結論 102 5-2 未來發展方向 102 第六章 參考文獻 104

    [1] 范盛然, "低溫環境下鰭片結霜研究," 碩士論文, 動力機械工程學系, 國立清華大學, 2003.
    [2] M. Robinson, "Movement of Air in the Electric Wind of the Corona Discharge," Transactions of the American Institute of Electrical Engineers, vol. 80, pp. 143-150, 1961.
    [3] F. Hauksbee, Physico-mechanical experiments on various subjects., 1st ed. London,: Printed by R. Brugis, for the author, pp. 46-47, 1709.
    [4] O. M. Stuetzer, "Ion Drag Pressure Generation," Journal of Applied Physics, vol. 30, no. 7, pp. 984-994, 1959.
    [5] J. R. McDonald, W. B. Smith, H. W. Spencer III, and L. E. Sparks, "A mathematical model for calculating electrical conditions in wire‐duct electrostatic precipitation devices," Journal of Applied Physics, vol. 48, no. 6, pp. 2231-2243, 1977.
    [6] H. Bondar and F. Bastien, "Effect of neutral fluid velocity on direct conversion from electrical to fluid kinetic energy in an electro-fluid-dynamics (EFD) device," Journal of Physics D: Applied Physics, vol. 19, pp. 1657-1663, 1986.
    [7] J. Lowke and R. Morrow, "Theory of electric corona including the role of plasma chemistry," Pure and applied chemistry, vol. 66, no. 6, pp. 1287-1294, 1994.
    [8] I. Metwally, "Factors affecting corona on twin-point gaps under dc and ac HV," Dielectrics and Electrical Insulation, IEEE Transactions on, vol. 3, no. 4, pp. 544-553, 1996.
    [9] F. Lai and R. Sharma, "EHD-enhanced drying with multiple needle electrode," Journal of electrostatics, vol. 63, pp. 223-237, 2005.
    [10] S. M. Marco, H. R. Velkoff, "Effect of Electrostatic Fields on Free Convection Heat Transfer from Flat Plate," ASME Paper, no. 63, ht. 9, 1963.
    [11] R. O’brien and A. Shine, "Some effects of an electric field on heat transfer from a vertical plate in free convection," Journal of Heat Transfer, vol. 89, p. 114-116, 1967.
    [12] M. E. Franke, "Effect of vortices induced by corona discharge on free-convection heat transfer from a vertical plate," Journal of Heat Transfer, vol. 91, pp. 427-433, 1969.
    [13] K. Kibler and H. Carter, "Electrocooling in gases," Journal of Applied Physics, vol. 45, no. 10, pp. 4436-4440, 1974.
    [14] M. Franke and L. Hogue, "Electrostatic cooling of a horizontal cylinder," ASME Transactions Journal of Heat Transfer, vol. 113, pp. 544-548, 1991.
    [15] M. Ohadi, D. Nelson, and S. Zia, "Heat transfer enhancement of laminar and turbulent pipe flow via corona discharge," International journal of heat and mass transfer, vol. 34, pp. 1175-1187, 1991.
    [16] B. Owsenek, J. Seyed-Yagoobi, and R. Page, "Experimental investigation of corona wind heat transfer enhancement with a heated horizontal flat plate," Journal of Heat Transfer, vol. 117, p. 309-315, 1995.
    [17] B. Owsenek and J. Seyed-Yagoobi, "Theoretical and experimental study of electrohydrodynamic heat transfer enhancement through wire-plate corona discharge," Journal of Heat Transfer, vol. 119, p. 604-610, 1997.
    [18] S. Bhattacharyya and A. Peterson, "Corona Wind-Augmented Natural Convection--Part 1: Single Electrode Studies," Journal of Enhanced Heat Transfer, vol. 9, pp. 209-219, 2002.
    [19] L. Zhao and K. Adamiak, "EHD flow in air produced by electric corona discharge in pin–plate configuration," Journal of electrostatics, vol. 63, pp. 337-350, 2005.
    [20] R. T. Huang, W. J. Sheu, and C. C. Wang, "Heat transfer enhancement by needle-arrayed electrodes-An EHD integrated cooling system," Energy Conversion and Management, vol. 50, no. 7, pp. 1789-1796, 2009.
    [21] D. B. Go, S. V. Garimella, T. S. Fisher, and R. K. Mongia, "Ionic winds for locally enhanced cooling," Journal of Applied Physics, vol. 102, no.7, pp. 053302-053302-8, 2007.
    [22] D. B. Go, R. A. Maturana, T. S. Fisher, and S. V. Garimella, "Enhancement of external forced convection by ionic wind," International journal of heat and mass transfer, vol. 51, no.25-26, pp. 6047-6053, 2008.
    [23] N. Jewell-Larsen, H. Ran, Y. Zhang, M. Schwiebert, K. Tessera, and A. Mamishev, "Electrohydrodynamic (EHD) cooled laptop," pp. 261-266,2009.
    [24] M. Boutlendj, N. Allen, H. Lightfoot, and R. Neville, "Positive DC corona and sparkover in short and long rod-plane gaps under variable humidity conditions," pp. 31-36, 1991.
    [25] L. Fouad and S. Elhazek, "Effect of humidity on positive corona discharge in a three electrode system," Journal of electrostatics, vol. 35, pp. 21-30, 1995.
    [26] P. Calva and C. Espino, "Effect of the humidity in the ionic mobility in reduced air-density," vol. 2, pp. 508-511,1998.
    [27] L. Leger, E. Moreau, and G. G. Touchard, "Effect of a DC corona electrical discharge on the airflow along a flat plate," Industry Applications, IEEE Transactions on, vol. 38, no. 6, pp. 1478-1485, 2002.
    [28] B. N. Hewakandamby, "A numerical study of heat transfer performance of oscillatory impinging jets," International journal of heat and mass transfer, vol. 52, pp. 396-406, 2009.
    [29] 蔡芳明, "高速衝擊噴流對於散熱片之熱傳分析," 碩士論文, 機電系統工程研究所, 國立臺南大學, 2010.
    [30] Y. Sekino, R. Oliyuila, and K. Kmeko, "Measurement of Unsteady Electrohydrodynamics Flow from Injection Charges Free Surface by Particle Image Velocimetry," IEEE, pp. 162-165, 1998.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE