研究生: |
羅嘉雁 Angelia Sulaiman Lo |
---|---|
論文名稱: |
以X光吸收光譜法分析嵌入微孔及中孔無機物質的金屬 Applications of X-ray Absorption Spectroscopy on characterization of metal containing zeolites and mesoporous materials |
指導教授: |
趙桂蓉博士
Kuei-Jung Chao |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 96 |
中文關鍵詞: | X光吸收光譜 、氧化釕 、ZSM-5沸石 、FAU沸石 |
相關次數: | 點閱:67 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Ruthenium oxide particles were introduced into ZSM-5 (MFI type) by aqueous ion exchange and hydrothermal zeolite synthesis methods in the presence or absence of tetrapropyl ammonium ions as organic template. The local structure of ruthenium has been studied by XAS, PXRD, and TEM characterization methods.
The aqueous ion exchange method leads to anhydrous ruthenium oxide with average particle size of 2.0 nm by TEM and □ 2 nm by PXRD, while small hydrous ruthenium oxide particles with diameter 0.6 nm are obtained by template-free synthesis. Similar template-free method was applied to introduce ruthenium oxide particles into FAU pores, which leads to hydrous ruthenium oxide with diameter 1.3 nm. In the presence of organic template (TPA), hydrous ruthenium oxide particles were introduced, but after subsequent calcination, large anhydrous ruthenium oxide particles □ 2 nm detected by PXRD were obtained.
The effect of solvent, concentration and reduction treatment on the sizes and morphologies on the local structure of platinum, palladium, and gold incorporated in mesoporous silicas were also investigated by XAS characterization method. Pt nanonetworks and nanoparticles were observed in Pt/MCM-48 sample prepared from an aqueous solution and ethanol solution of Pt-precursor, respectively. Different average sizes of Au metals (~3 and ~5 nm) also have been observed in Au/SBA-15 samples reduced under NaBH4 solution and H2 gas flow treatment, respectively.
1. D. W. Breck, “Zeolite-Molecular Sieve’, John Wiley and Sons. New York. 1974.
2. Mcbain, J. W. In “The Sorption of Gases and Vapors by Solids”, Rutledge and Sons, London. 1932.
3. R. M. Milton, U. S. Patent 2,882,243-244, 1959.
4. D.W. Breck, U. S. Patent 3,130,007, 1964.
5. L. B. Sand, U. S. Patent 3,436,174, 1969.
6. R. J. Argauer, G. R. Landolt, U. S. Patent 3,702,886, 1972.
7. M. Hartmann and L. Kevan, Chem. Rev. 1999, 99, 635.
8. G. Bellussi and M. S. Rigutto, Advanced Zeolite Science and Applications, Elsevier, Amsterdam, 1994.
9. Chao. K. J., Wei, A. C., Wu, H. C., and Lee, J. F. Catalysis Today. 1998.
10. Beck, J. S., J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. Mccullen, J. B. Higgius, J. L. Schlenker, J. Am. Chem. Soc. 1992, 114, 10834.
11. S. Inagaki, Y. Fukushima, K. Kuroda. J. Chem. Soc. Chem. Commun. 1993, 680.
12. G. D. Stucky, D. Zhao, P. Yang, W. Lukens, N. Melash, B. F. Chemelka, Stud. In Surf. Science and & Catal. 1998, 117, 1.
13. P. T. Tanev, T. J. Pinnavaia, Science. 1995, 267, 865.
14. H. Yang, N. Coombs, G. A. Ozin. Nature. 1997, 386, 692.
15. M. Ogawa, N. Masukawa, Micro. and Meso. Mater. 2000, 38, 35.
16. G. S. Attard, J. C. Glyde, C. G. GÖltner, Nature, 1995, 378, 366.
17. S. Che, Z. Liu, T. Ohsuna, K. Sakamoto, O. Terasaki, T. Tatsumi, Nature, 2004, 429, 281.
18. A. P. Alivisatos, Science, 1996, 271, 933.
19. J. Hu, T. W. Odom, C. M. Lieber, Acc. Chem. Res. 1999, 32, 435.
20. J. S. Bradley, in: G. Schmid (Ed.), Clusters and Colloids, Chapter 6. VCH, Weinheim, 1994, p.459.
21. M. Ichikawa, in: P. Braunstein, L.A. Oro, P. R. Raithby (Eds.), Metal Clusters in Chemistry, Wiley-VCH, Weinheim, 1999, p.1273.
22. P. Braunstein, H-P. Kormann, W. Meyer Zaika, R. Pugin, G. Schmid, Chem. Eur. J. 6, 2000, 4637.
23. C. M. Yang, H. S. Sheu, K. J. Chao, Adv. Funct. Mater. 2001, 12, 143.
24. C.H. Ko, R. Ryoo, Chem. Commun., 1996, 2467.
25. R. Ryoo, J. M. Kim, C. H. Ko, C. H. Shin, J. Phys. Chem., 1996, 100, 17718.
26. M. Sasaki, M. Osada, N. Sugimoto, S. Inagaki, Y. Fukushima, A. Fukuoka, M. Ichikawa, Micro. Meso. Mater. 1998, 21, 597.
27. M. Sasaki, M. Osada, N. Higashimoto, T. Yamamoto, A. Fukuoka, M. Ichikawa, J. Mol. Catal. A. Chem. 1999, 141, 223.
28. U. Junges, F. Schütt, G. Schmid, Y. Uchida, R. Schlögl, Ber. Bunsen-Ges. Phys. Chem. 1997, 101, 1631.
29. International Zeolite Association (IZA), Atlas of Zeolite Structure Types, taken from http://www.iza-structure.org/databases/.
30. A. Jeutys, Phys. Chem. Chem. Phys. 1999, 1, 4059.
31. Z. L. Wang, in: Characterization of Nanophase Materials. 2000, Wiley-VCH, New York.
32. D. B. Williams, C. B. Carter, in: Transmission Electron Microscopy. 1996, Plenum Press, New York.
33. Taiwan National Synchrotron Radiation Research Center (NSRRC) homepage: www.nsrrc.org.tw
34. A. L. Ankudinov, B. Ravel, J. J. Rehr, S. D. Conradson, Phys. Rev. B. 1998, 7565.
35. S. I. Zabinsky, J. J. Rehr, A. L. Ankudinov, R. C. Albers, M. Eller, J. Phys. Rev. B, 1995, 52, 2995.
36. J. P. Glusker and K .N. Trueblood, in: Crystal Structure Analysis, a Primer, second edition. 1985, Oxford, New York.
37. A. C. Wei, doctoral thesis : Applications of XAS on Characterization of Metal Containing Molecular Sieves and Metal Oxides, Department of Chemistry, National Tsing Hua University, Taiwan, 2001, p. 30-31.
1. Zhan, B., White, M. A., Sham, T-K., Pincock, J.A., Doucet, R. J., Ramana Rao, K. V., Robertson, K. N., and Cameron, T. S., J. Am. Chem. Soc. 2003, 125, 2195.
2. Madhavaram, H., Idriss, H., Wendt, S., Kim. Y. D., Knapp, M., Over, H., Amann, J., LÖffller, E., and Muhler, M. J. Catal. 2001, 202, 296.
3. Mc. Keown, D. A., Hagans, P. L., Carette, Linda P. L., Russel, A. E., Swider, K. E., and Rolison, D. R. J. Phys. Chem. B 1999, 103, 4825.
4. Mo, Y., Antonio, M. R., and Scherson, D. A. J. Phys. Chem. B 2000, 104, 9777.
5. JCPDS-ICDD #88-0286
6. Treacy, M. M. J.; Higgins, J. B.; von Ballmoos, R. eds. Collection of Simulated XRD Powder Patterns for Zeolites, 3rd ed.; Elsevier: New York, 1996.
1. a) C. M. Yang, H. S. Sheu, K .J. Chao, Adv. Func. Mater. 2002, 12, 143. b) C. M. Yang, P. H. Liu, Y. F. Ho, C. Y. Chiu, K .J. Chao, Chem. Mater. 2003, 15, 275. c) C. M. Yang, M. Kalwei, F. Shchüt, K. J Chao, Appl. Catal. A. Gen. 2003, 254, 289.
2. F. Kleitz, S. C. Choi, R. Ryoo, Chem. Commun. 2003, 2136.
3. R. Ryoo, S. H. Joo and J. M. Kim J. Phys. Chem. B, 1999,103, 7435.
4. R. Ryoo and J. M. Kim J. Chem. Soc. Chem. Commun. 1995, 711.
5. J. M. Kim, S. K. Kim and R. Ryoo Chem. Commun. 1998, 259.
6. D. Zhao, Q. Huo, J. Feng, B. F. Chmelka and G. D. Stucky J. Am. Chem. Soc. 1998, 120, 6024.
7. Yen-Po, Chang (張彥博), Master Thesis, 嵌入中孔洞氧化矽之金屬奈米結構 : 合成與鑑定.
8. E. A. Stern, M. Newville, Y. Yacoby, D. Haskel, Physica B, 1995, 208, 117.
9. A. L. Ankudinov, J. Rehr. J. Phys. Rev. B, 1997, 56, R 1712.
10. A. Fukuoka, H. Araki, Y. Sakamoto, S. Inagaki, Y. Fukushima, and M. Ichikawa, Inorg. Chim. Acta, 2003, 350, 371-378.