簡易檢索 / 詳目顯示

研究生: 喻哲均
Yu, Che-Chun
論文名稱: 利用熱處理改變碳黑與奈米碳管的微結構與電性
Changing the microstructure and electrical properties of carbon black and carbon nanotubes by heat treatments
指導教授: 徐文光
HSU, WEN-KUANG
口試委員: 許景棟
HSU, CHING-TUNG
薛森鴻
SYUE, SEN-HONG
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 55
中文關鍵詞: 碳黑奈米碳管熱處理微結構電性
外文關鍵詞: Carbon black, Carbon nanotubes, Heat treatment, microstructure, electrical properties
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討熱處理對碳黑與奈米碳管電子結構與導電性的影響,透過
    高溫處理了解熱處理如何影響碳材料的結構與電子性質。碳黑與奈米碳管在
    合成過程中可能會產生結構缺陷,進而影響其電子結構與導電性。因此,本
    研究透過高溫熱處理來修復結構缺陷,並評估其對材料導電性能的影響。
    實驗選用的碳黑與奈米碳管,分別進行兩組熱處理條件:第一組加熱至
    1200°C 並持溫1小時,第二組加熱至1600°C並持溫2小時,並進行了XRD
    分析材料的結晶結構變化,拉曼光譜探討材料的石墨化程度與缺陷密度,
    XPS 分析鍵結改變量,電子順磁共振測定未成對電子含量,四點探針法測量
    電阻率,遠紅外線放射率量測熱輻射性質,並利用SEM與TEM觀察微結構
    變化。
    研究結果顯示,碳黑與奈米碳管在經過熱處理後,內部缺陷均密度有所
    降低,但對於導電性能卻是有著截然相反的效應。對於碳黑而言,在1600°C
    熱處理後,其電阻率顯著下降,究其原因,其為顆粒狀結構, 高溫熱處理
    後石墨化程度提升、雜質去除及缺陷密度減少,進而優化導電特性。而對於
    奈米碳管,其導電性的決定性因素是電子在管與管之間的跳遷或穿隧效應,
    而非單一碳管內的傳輸能力。因此,當經過高溫熱處理後,儘管部分結構缺
    陷可能被修復,但同時也可能造成碳管間接觸界面的改變,如碳管之間的鍵
    結鬆動、排列結構改變、或表面官能基被去除,進而降低管間的電子跳遷效
    率,使得整體導電網路變得較不連續,導電率下降。


    This study investigates the effects of heat treatment on electronic structure and
    electrical conductivity of carbon black and carbon nanotubes (CNTs). Our aim is to
    through high-temperature treatments and to further understand how thermal
    processes influence the structural and electronic properties of carbon materials.
    During synthesis, structural defects may form in both carbon black and CNTs,
    adversely affecting their electronic structure and conductivity. Therefore, high
    temperature treatment is employed in this study to repair lattice defects and evaluate
    its impact on electrical performance of carbon materials.
    Carbon black and CNTs provided by Huan-Ya Chemical Co. are selected for
    experiments and subjected to two different thermal treatment conditions: heating to
    1200°C for 1 h and 1600°C for 2 h. Treated materials are subsequently analyzed by
    X-ray diffraction (XRD) to examine changes in crystalline structure; Raman
    spectroscopy to assess the degree of graphitization and defect density; X-ray
    photoelectron spectroscopy (XPS) to analyze bonding characters; electron
    paramagnetic resonance (EPR) to measure unpaired electron concentrations; four
    terminal method to determine resistivity and far-infrared emissivity measurements
    to assess thermal radiation properties. Scanning electron microscopy (SEM) and
    transmission electron microscopy (TEM) are also used to inspect microstructural
    changes.
    The results show that after heat treatments, defect density in both carbon black
    and CNTs are reduced; however, their effects on electrical conductivity are notably
    different. For carbon black, resistivity is significantly reduced after heat treatments
    at 1600°C for 2h. This improvement is attributed to improved degree of
    graphitization, removal of impurities and reduced defect density. In contrast, the
    conductivity of CNTs mainly depends on electron hopping/tunneling between tubes
    rather than diffusive transport within individual nanotubes. Therefore, removal of
    structural defects which have been previously proved to be acting as low energy
    intertube transfer lattices disrupts the continuity of conductive network, resulting in
    reduction of conductivity.

    QR CODE