簡易檢索 / 詳目顯示

研究生: 林卓穎
Lin, Cho-Ying
論文名稱: 鎵在鍺(100)表面上的不尋常成長過程與其原子模型
Atomic Model for the Unusual Gallium Growth Mode on the Ge(100) Surface
指導教授: 林登松
Lin, Deng-Sung
口試委員: 蔡秀芬
Tsay, Shiow-Fon
褚志崧
Chuu, Chih-Sung
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 70
中文關鍵詞: 鎵在鍺(100)表面上的成長
相關次數: 點閱:58下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中,利用掃描式穿隧電子顯微技術來探討鎵在鍺(100)上的鍵結模式及表面形貌。常溫下,少量的鎵原子在鍺表面上往 [110] 方向成長形成長鏈狀,隨著沉積量的增加鎵原子開始往 [-110] 方向成長,有如一塊塊的鎵小島在鍺表面上展開。當沉積量達0.5 ML時鎵在鍺表面上的結構為2 × 2,若再增加覆蓋量則鎵原子將以三維團簇的形式堆疊在2 × 2上。此成長模型如同鎵在矽(100)上成長一般。
    不同於室溫下的成長模式,當鍺(100)樣品保持在300 ˚C下沉積鎵原子,其成長模式很特別。我們利用在不同偏壓下有不同的電子雲狀態密度,成功地找出鎵原子的隱身之處,發現鎵原子會在鍺的SA階梯邊緣處置換掉鍺原子。因此我提出了一個模型來解釋此鎵原子與鍺原子間的交互作用。在300 ˚C下鎵原子會有規律性的置換掉鍺原子並造成表面鍺的雙原子單體缺陷,隨著鎵原子的沉積量增加鍺的表面缺陷面積也會增加,就像負的島嶼在表面上快速成長一般,除此之外鍺的階梯邊緣處變得崎嶇不堪。在大於0.5 ML下鎵原子會在鍺上形成有序的小島嶼結構8 × n ( n = 4, 5 )並在沉積量大於4 ML之後鎵原子會與鍺原子形成合金。


    In this study, we use the STM to explore the Ga growth mode on the Ge(100) surface. A small amount of Ga atoms develop like a chain on Ge surface along [110] direction in room temperature. With the deposition of Ga is increasing, Ga atoms will grow along [-110] direction, spreading like islands on the Ge(100). Until the deposition is 0.5 ML, the Ga atoms is 2 × 2 structure on the surface. When the deposition is over 0.5ML, the Ga clusters will appear. In the room temperature, the Ga/Ge(100) model is the same as Ga/Si(100) model.
    Unlike the Ga/Ge(100) growth mode at room temperature, the Ge(100) was kept at 300 ˚C and deposited Ga atoms is a special phenomenon. We find the Ga atoms which hide on the edge of SA by using the different voltage which have different density of state. We propose a model to explain how’s the interaction between Ga and Ge atoms. At 300 ˚C, Ga atoms will take off and displace the Ge dimer regularity. After increasing the Ga atoms, the surface defect will increase, spreading like a negative island. In addition, the step edge of Ge become rough. When the deposition is great than 0.5 ML, the Ga island arrange on the surface orderly, which structure is 8 × n ( n= 4, 5 ). The Ge and Ga become alloy after the deposition is 4 ML.

    第一章 簡介..........................................5 1.1研究動機.........................................5 1.2鍺晶體的結構......................................6 1.3相關論文.........................................10 1.3.1 矽(001)下的穩定單層及雙層階梯結構................10 1.3.2 穩定的鍺(105)在矽上............................11 1.3.3 小於0.5 ML室溫下鎵原子在矽(100)上之成長...........13 1.3.4 大於0.5 ML鎵之有序結構在矽(100)上................15 第二章 實驗儀器操作與原理..............................18 2.1真空系統.........................................18 2.1.1真空幫浦及氣壓測量儀介紹..........................19 2.1.2抽真空概略程序...................................21 2.2 掃描穿隧電子顯微鏡................................23 2.2.1 量子穿隧效應...................................23 2.2.2 穿隧式電子顯微鏡細部構造.........................25 2.2.3 掃描穿隧式顯微鏡之影像擷取.......................26 2.3 蒸鍍槍原理.....................................28 2.4 探針製作、樣品準備及溫度測量.......................29 2.4.1 探針製作......................................29 2.4.2 鍺(100)樣品實驗前之準備程序及鎵的沉積法...........31 2.4.3 樣品溫度測量...................................33 第三章 實驗結果與討論.................................34 3.1 鍺(100)表面結構................................34 3.2 室溫下鎵在鍺(100)晶面上成長機制...................35 3.3 300˚C下鎵在鍺(100)晶面上的成長機制...............47 3.4 25~250˚C下鎵在鍺(100)晶面上的成長機制............62 3.5 600˚C下鎵在鍺(100)晶面上的成長機制...............65 第四章 結論..........................................66 參考文獻............................................69

    1 T. W. Pi, et al., Journal of Applied Physics 109, 063725 (2011).
    2 M. M. R. Evans and J. Nogami, Physical Review B 59, 7644 (1999).
    3 S. Hara, H. Kobayashi, K. Ota, Y. Nagura, K. Irokawa, H. I. Fujishiro, K. Watanabe, H. Miki, and A. Kawazu, Surface Science 603, 183 (2009).
    4 Y. Takagi, Y. Yoshimoto, K. Nakatsuji, and F. Komori, Surface Science 593, 133 (2005).
    5 D. J. Chadi, Physical Review Letters 59, 1691 (1987).
    6 Y. Fujikawa, K. Akiyama, T. Nagao, T. Sakurai, M. G. Lagally, T. Hashimoto, Y. Morikawa, and K. Terakura, Physical Review Letters 88, 176101 (2002).
    7 Y. W. Mo, D. E. Savage, B. S. Swartzentruber, and M. G. Lagally, Physical Review Letters 65, 1020 (1990).
    8 J. S. Hovis, R. J. Hamers, and C. M. Greenlief, Surface Science 440, L815 (1999).
    9 J. A. Kubby, J. E. Griffith, R. S. Becker, and J. S. Vickers, Physical Review B 36, 6079 (1987).
    10 J. Nogami, A. A. Baski, and C. F. Quate, Physical Review B 44, 1415 (1991).
    11 J. Čechal, J. Mach, S. Voborný, P. Kostelník, P. Bábor, J. Spousta, and T. Šikola, Surface Science 601, 2047 (2007).
    12 J. Mach, J. Čechal, M. Kolíbal, M. Potoček, and T. Šikola, Surface Science 602, 1898 (2008).
    13 M. A. Albao, M. M. R. Evans, J. Nogami, D. Zorn, M. S. Gordon, and J. W. Evans, Physical Review B 72, 035426 (2005).
    14 H. J. W. Zandvliet, H. K. Louwsma, P. E. Hegeman, and B. Poelsema, Physical Review Letters 75, 3890 (1995).
    15 A. Horsfield, E. Akhmatskaya, R. Nobes, J. Andzelm, G. Fitzgerald, and N. Govind, Physical Review B 66, 085309 (2002).
    16 J.-Y. Koo, J.-Y. Yi, C. Hwang, D.-H. Kim, S. Lee, and D.-H. Shin, Physical Review B 52, 17269 (1995).
    17 M. Tomitori, K. Watanabe, M. Kobayashi, F. Iwawaki, and O. Nishikawa, Surface Science 301, 214 (1994).
    18 Z. Gai, R. G. Zhao, H. Ji, X. Li, and W. S. Yang, Physical Review B 56, 12308 (1997).
    19 H. Sakama, A. Kawazu, T. Sueyoshi, T. Sato, and M. Iwatsuki, Physical Review B 54, 8756 (1996).
    20 M. Dürr, A. Biedermann, Z. Hu, U. Höfer, and T. F. Heinz, Science 296, 1838 (2002).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE