簡易檢索 / 詳目顯示

研究生: 許翔淇
Hsu, Hsiang-Chi
論文名稱: Bi2Sr2CoO6+δ單晶之角解析光電子能譜研究
Angle-resolved Photoemission Studies in Bi2Sr2CoO6+δ
指導教授: 崔古鼎
Tsuei, Ku-Ding
口試委員: 周方正
Chou, Fang-Cheng
陸大安
Luh, Dah-An
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 72
中文關鍵詞: 角解析光電子能譜Bi2Sr2CoO6+δ電子結構
外文關鍵詞: ARPES, Bi2Sr2CoO6+δ, electronic structure
相關次數: 點閱:83下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 層狀鈷氧化物Bi2Sr2CoO6+δ與高溫超導體材料Bi2Sr2CuO6+δ具備極為相似的結構。然而,將Co替換Cu原子後,Bi2Sr2CoO6+δ不再具備超導特性並成為一絕緣體,此一現象引起科學家廣泛注意。隨著氧含量的不同,Bi2Sr2CoO6+δ展現出豐富的磁變化。由於上述兩項原因,且價帶頂部(近費米能階處)的行為與上述所言之電磁特性息息相關,我們以角解析光電子能譜針對Tpeak~280 K和~150K的Bi2Sr2CoO6+δ的電子能帶結構進行研究,期望能觀察到Bi2Sr2CoO6+δ光電子能譜中價帶頂部的能帶色散現象。
    近費米能階處的能態特徵主要來自Co-O 面的貢獻,根據角解析光電子能譜結果顯示,近費米能階之能態特徵無顯著色散行為,顯示出局限特性,此種現象與具備明顯色散行為的Bi2Sr2CuO6+δ極為不同。藉由探討不同入射光能量下的光電子能譜結果,我們觀察到靠近布里淵區中心在束縛能約6.0 eV處由Bi-O面貢獻的電子價帶的有效質量會隨入射光能量改變而產生變化,並利用此有效質量變化估算出Tpeak~280 K 的Bi2Sr2CoO6+δ之內位能V0約為13.5 eV。此外,我們所觀察到的有效質量變化週期為以倒晶格常數2π/c預期的結果的2倍,顯示出Bi2Sr2CoO6+δ沿著kz方向上的電子能帶將受到其雙層層狀結構的影響。在kx-ky平面上的色散關係研究中,我們觀察到沿著Γ→M→Γ"方向,EB~6.0 eV能帶上的有效質量小於沿著Γ→X→Γ'的結果。考量Bi2Sr2CoO6+δ材料內原子的鍵結方向,此現象顯示Bi-O的鍵結方向雖然排列不甚規則,但整體而言其在沿著Γ→M→Γ"方向形成了較連續規律的排列,致使電子較容易在此方向上移動。


    Layered cobalt oxide Bi2Sr2CoO6+δ has attracted attention because of its isostructure to the cuprate high Tc superconductor Bi2Sr2CuO6+δ (Bi2201). However, the replacement of Cu by Co completely suppresses superconductivity and the crystal becomes an insulator. In addition, with various oxygen contents, Bi2Sr2CoO6+δ exhibits a series of surprisingly rich magnetic properties of ferromagnetism and anti ferromagnetism. Because of these reasons, we have carried out an angle-resolved photoemission (ARPES) measurement to study the electronic band structure of Bi2Sr2CoO6+δ with Tpeak~280 K and ~150 K. We are mostly interested in the valence band maximum (bands nearest to EF) in Bi2Sr2CoO6+δ which is closely related to the electronic and magnetic properties in Bi2Sr2CoO6+δ and expect to measure a "k" _"∥" -dependent dispersion.
    The ARPES results reveal that the bands nearest to EF, which are originated from the Co-O planes, are nondispersive showing localized characters, in contrast to bands dispersing across EF in Bi2Sr2CuO6+δ. By investigating the photon energy dependence, we observe that near the Brillouin zone center the effective mass of the peak at EB~6.0 eV, which is from the BiO planes, varies with photon energy, and estimate the inner potential V0 at about 13.5 eV in Bi2Sr2CoO6+δ with the Tpeak~280 K sample. Furthermore, the periodicity of the variation is twice as large as we anticipated by the reciprocal lattice constant "2π" /"c" . It indicates that the band structure along the kz direction is strongly influenced by the bilayer structure in Bi2Sr2CoO6+δ. In the in-plane measurement, we discover that the effective mass of the state at EB~6.0 eV in the direction along Γ→M→Γ" is smaller than along Γ→X→Γ'. By concerning the bonding directions, it indicates that although the whole Bi-O bonding is disordered due to large O vacancies, it forms a more continuous, regular order along Γ→M→Γ" and make electrons move more easily.

    Chapter 1 Introduction 1 Chapter 2 Photoemission Spectroscopy 3 2.1 Introduction 3 2.2 Theory of Photoemission Process 7 2.3 Determination of Inner Potential 15 2.4 Synchrotron Light Source 15 Chapter 3 Sample Information 19 3.1 Introduction 19 3.2 Sample Preparation 19 3.3 Sample Physical Properties 21 3.4 Crystal Field Theory 32 3.5 Jahn-Teller Effect 34 3.6 Hubbard Model 36 Chapter 4 Photoemission Spectroscopy of Bi2Sr2CoO6+δ 39 4.1 Incident Photon Energy Dependent Band Structure 39 4.2 In-plane Band Structure 51 Chapter 5 Conclusions 67 Chapter 6 Reference 69  

    Chapter 1
    1 C. Michel, M. Hervieu, M. M. Borel, A. Grandin, F. Deslandes, J. Provost and B. Raveau, Z. Phys. B, 68, 421 (1987). Superconductivity in the Bi-Sr-Cu-O system.
    2 J. Akimitsu, A. Yamazaki, H. Sawa and H. Fujiki, Jpn. J. Appl. Phys. 26, L2080 (1987). Superconductivity in the Bi-Sr-Cu-O system.
    3 H. Meada, Y. Tanaka, M. Fukutomi and T. Asano: Jpn. J. Appl. Phys. 27, L209 (1988). A New High-Tc Oxide Superconductor without a Rare Earth Element.
    4 J. M. Tarascon, P. F. Miceli, P. Barboux, D. M. Hwang, G. W. Hull, M. Giroud, L. H. Greene, Yvon LePage, W. R. McKinnon, E. Tselepis, G. Pleizier, M. Eibschutz, D. A. Neumann, and J. J. Rhyne, Phys. Rev. B. 39, 11587 (1989). Structure and magnetic properties of nonsuperconducting doped Co and Fe Bi2Sr2Cu1 – xMxOy phases.
    5 J. M. Tarascon, Y. le Page, W. R. Mckinnon, E. Tselepis, P. Barboux, B. G. Bagley, and R. Ramesh, Materials Research Society Symposia Proceedings. 156, 317 (1989). On the Origin of the Structural Modulation in the Bi Cuprates As Derived from 3d-Metal Substituted Phases.
    6 J. B. Shi, J. C. Ho, T. J. Lee, B. S. Chiou, H. C. Ku, Physica C. 205, 129 (1992). Cobalt Ordering in Layered Bi2Sr2CoO6+δ Single Crystal.
    7 G. Burns, G. V. Chandrashekhar, F. H. Dacol, M. W. Shafer, and P. Strobel, Solid State Commun. 67, 603 (1988). Phonons in the high temperature Bi2Can-1Sr2CunO4+2n superconductors.
    8 K. J. Thomas, Y. S. Lee, F. C. Chou, B. Khaykovich, P. A. Lee, M. A. Kastner, R. J. Cava, and J. W. Lynn, Phys. Rev. B. 66, 054115 (2002). Antiferromagnetism, ferromagnetism, and magnetic phase separation in Bi2Sr2CoO6+δ.
    9 H. C. Hsu, ‘Crystal Growth and Physical Property Studies of Low Dimensional Transition Metal Oxide Materials Bi2Sr2CoO6+δ and LiCu2O2’, Ph.D. thesis, National Taiwan Normal University, June (2010).
    10 A. Moreo, S. Yunoki, and E. Dagotto, Science 283, 2034 (1999), and references therein. Phase Separation Scenario for Manganese Oxides and Related Materials.
    11 G. Chern, L. R. Song, J. B. Shi, Physica C. 253, 97 (1995). Observation of high dielectric permittivity in single-crystal Bi2Sr2CoO6+δ.

    Chapter 2
    1 Hertz, H., Ann. Phys. (Leipzig) 31, 983 (1887).
    2 Einstein, A., Ann. Phys. (Leipzig) 17, 132 (1905).
    3 Stefan Hüfner. Photoelectron Spectroscop. Springer.
    4 Andrea Damascelli, Zahid Hussain, Zhi-Xun Shen, Rev. of Modern Phys. 75, 473 (2003). Angle-resolved photoemission studies of the cuprate superconductors.
    5 Berglund, C. N., and W. E. Spicer, Phys. Rev. 136, A1030 (1964).
    6 Andrea Damascelli, Phys. Scr. 109, 61 (2004). Probing the electronic structure of complex systems by ARPES.
    7 Eli Rotenberg, 2001 Berkeley-Stanford Summer School.
    8 National Synchrotron Radiation Research Center, Introduction to synchrotron radiation. Website of National Sunchrotron Radiation Research Center.

    Chapter 3
    1 Kazimierz Conder, Solid State Chemistry Group Laboratory for Developments and Methods and Laboratory for Neutron Scattering Paul Scherrer Institute & ETH Zürich
    2 K. J. Thomas, Y. S. Lee, F. C. Chou, B. Khaykovich, P. A. Lee, M. A. Kastner, R. J. Cava, and J. W. Lynn, Phys. Rev. B. 66, 054115 (2002). Antiferromagnetism, ferromagnetism, and magnetic phase separation in Bi2Sr2CoO6+δ.
    3 H. C. Hsu, ‘Crystal Growth and Physical Property Studies of Low Dimensional Transition Metal Oxide Materials Bi2Sr2CoO6+δ and LiCu2O2’, Ph.D. thesis, National Taiwan Normal University, June (2010).
    4 J. M. Tarascon, P. F. Miceli, P. Barboux, D. M. Hwang, G. W. Hull, M. Giroud, L. H. Greene, Yvon LePage, W. R. McKinnon, E. Tselepis, G. Pleizier, M. Eibschutz, D. A. Neumann, and J. J. Rhyne, Phys. Rev. B. 39, 11587 (1989). Structure and magnetic properties of nonsuperconducting doped Co and Fe Bi2Sr2Cu1 – xMxOy phases.
    5 J. M. Tarascon, Y. le Page, W. R. Mckinnon, E. Tselepis, P. Barboux, B. G. Bagley, and R. Ramesh, Materials Research Society Symposia Proceedings. 156, 317 (1989). On the Origin of the Structural Modulation in the Bi Cuprates As Derived from 3d-Metal Substituted Phases.
    6 M. Onoda and M. Sato, Solid State Commun. 67, 799 (1988). Superlattice structure of superconducting Bi-Sr-Cu-O system.
    7 Y. Le Page, W. R. McKinnon, J. -M. Tarascon, and P. Barboux, Phys. Rev. B 40, 6810 (1989). Origin of the incommensurate modulation of the 80 K superconductor Bi2Sr2CaCu2O8.21 derived from isostructural commensurate Bi10Sr15Fe10O46.
    8 G. Burns, G. V. Chandrashekhar, F. H. Dacol, M. W. Shafer, and P. Strobel, Solid State Commun. 67, 603 (1988). Phonons in the high temperature Bi2Can-1Sr2CunO4+2n superconductors.
    9 A. Moreo, S. Yunoki, and E. Dagotto, Science 283, 2034 (1999), and references therein. Phase Separation Scenario for Manganese Oxides and Related Materials.
    10 G. Chern, L. R. Song, J. B. Shi, Physica C. 253, 97 (1995). Observation of high dielectric permittivity in single-crystal Bi2Sr2CoO6+δ.
    11 J. H. Van Vleck, J. Chem. Phys. 3, 803-806, 807-813 (1935).
    12 P. A. COX (1995).Transition Metal Oxides: An Introduction to their Electronic Structure and Properties.
    13 Yoshinori Tokura, Phys. Today 56, 7, 50 (2003)
    14 吳文斌、黃迪靖, ”物理雙月刊(廿六卷二期)”, p401, 中華民國2004年4月
    15 Mott N. F., Proc. Phys. Soc. A. 62, 416 (1949). The Basis of the Electron Theory of Metals, with Special Reference to the Transition Metals.
    16 Mott N. F., Can. J. Phys. 34, 1356 (1956).
    17 Mott N. F., (London: Taylor and Francis1974). Metal-Insulator Transitions.
    18 Anderson P.W., Phys. Rev. 115 (1959).
    19 Hubbard J. Proc Roy Soc (London), A281 (1964).
    20 J. Zaanen, G. A. Sawatzky and J. W. Allen, Phys. Rev. Lett. 55, 418 (1985). Band Gaps and Electronic Structure of Transition-Metal Compounds
    21 Andrea Damascelli, Zahid Hussain, Zhi-Xun Shen, Rev. of Modern Phys. 75, 473 (2003). Angle-resolved photoemission studies of the cuprate superconductors.

    Chapter 4
    1 Z.-X. Shen, J. W. Allen, P. A. P. Lindberg, D. S. Dessau, B. O. Wells, A. Borg, W. Ellis, J. S. Kang, S.-J. Oh, I. Lindau and W. E. Spicer, Phys. Rev. B. 42, 1817 (1990). Photoemission study of CoO.
    2 A. Fujimori, N. Kimizuka, M. Taniguchi, and S. Suga, Phys. Rev. B 36, 6691 (1987). Electronic structure of FexO.
    3 H. Eisaki, H. Takagi, S. Uchida, H. Matsubara, S. Suga, M. Nakamura, K. Yamaguchi, A. Misu, H. Namatame and A. Fujimori, Phys. Rev. B 41, 7188 (1990). Electronic structure of Bi-based copper oxide superconductors: A comparative photoemission study of Bi2Sr2CaCu2O8, Bi2Sr2CuO6, and Bi2Sr2CoO6+δ.
    4 C. Kim, F. Ronning, A. Damascelli, D. L. Feng, Z.-X. Shen, B. O. Wells, Y. J. Kim, R. J. Birgeneau, M. A. Kastner, L. L. Miller, H. Eisaki and S. Uchida, Phys. Rev. B 65, 174516 (2002). Anomalous temperature dependence in the photoemission spectral function of cuprates.
    5 C -M Cheng, K W Yeh, M K Wu, K -D Tsuei, Journal of Physics: Conference Series 150, 042015 (2009). The angle-resolved photoemission study of the quasi-one-dimensional chain cuprate LiCu2O2..
    6 M. A. Langell, M. D. Anderson, G. A. Carson, L. Peng, and S. Smith, Phys. Rev. B 59, 4791 (1999). Valence-band electronic structure of Co3O4 epitaxy on CoO(100).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE