簡易檢索 / 詳目顯示

研究生: 林逸昕
論文名稱: 應用紫外光成型奈米壓印製程於可撓式基板
Application of ultraviolet nanoimprint lithography on flexible substrate
指導教授: 陳榮順
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 63
中文關鍵詞: 奈米壓印
相關次數: 點閱:68下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究致力於整合奈米壓印製程於可撓式基板上,製作奈微米結構於PET/ITO基板,並利用此技術製作有機薄膜電晶體,且針對製作出的有機薄膜電晶體之半導體特性進行量測與分析。
    第一階段利用FOTS脫模劑對模仁表面進行處理,研究讓模仁表面能降低之最佳參數,使壓印製程能達到無沾黏的效果。另外利用模仁進行壓印研究,找出微米及奈米線寬之最佳壓印參數,並且使用透明基板解決紫外光成型奈米壓印技術中,透明模仁製作困難及製作成本高等問題。
    第二階段製作有機薄膜電晶體於可撓式基板上,期望利用最簡單的製程以及較低的成本,實現具有量產及高良率的元件製造方式。本研究利用奈米壓印技術製作有機薄膜電晶體,期望在製作電子元件上開拓出全新的領域,並且提升奈米壓印製程之實際應用價值。


    第一章 緒論---------------------------1 1.1 前言------------------------------1 1.2研究背景與動機---------------------2 1.2.1奈米壓印介紹---------------------2 1.2.2有機薄膜電晶體介紹---------------8 1.2.3 研究動機與目標------------------11 1.3 文獻回顧--------------------------12 1.3.1 可撓式基板部分------------------12 1.3.2 有機薄膜電晶體部分--------------15 1.4 論文架構--------------------------18 第二章 實驗架構與流程-----------------19 2.1 模仁設計--------------------------19 2.1.1 奈米尺寸模仁設計----------------19 2.1.2 微米尺寸模仁設計----------------19 2.1.3 有機薄膜電晶體結構設計----------20 2.2 模仁製作--------------------------23 2.2.1 矽模仁製作----------------------23 2.2.2 軟模仁製作----------------------24 2.3 模仁表面處理----------------------25 2.3.1 接觸角與表面能的量測與計算------26 2.3.2 抗沾黏實驗架構------------------28 2.4 奈微米結構製作--------------------30 2.5 有機薄膜電晶體元件製作------------33 第三章 實驗結果與討論-----------------35 3.1 模仁製作結果----------------------35 3.1.1 矽模仁製作----------------------35 3.1.2 軟模仁製作結果------------------39 3.2 模仁表面處理結果------------------41 3.3壓印實驗結果-----------------------45 3.4 有機薄膜電晶體製作結果------------56 第四章 結論與未來工作-----------------57 4.1 研究結果--------------------------57 4.2 未來工作--------------------------58 參考文獻------------------------------59

    [1]S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Applied Physics Letters, vol. 67, no. 21, pp. 3114-3116, 1995.
    [2]J. Haisma, M. Verheijen, K. Heuvel, and J. Berg, “Mold-assisted nanolithography: a process for reliable pattern replication,” The Journal of Vacuum Science and Technology B, vol. 14, no. 6, pp. 4124-4128, 1996.
    [3]M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake, T. Michaelson, S. V. Sreenivasan, J. Ekerdt, and C.G. Willson, “Step and flash imprint lithography : a new approach to high-resolution patterning,” Proceedings of the SPIE - The International Society for Optical Engineering, Santa Clara, CA, USA, vol. 3676, pp. 379-389, 1999.
    [4]A. Kumar and G. M. Whitesides, “Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol “ink” followed by chemical etching,” Applied Physics Letters, vol. 63, no. 14, pp. 2002-2004, 1993.
    [5]M. M. Ling and Z. Bao, “Thin film deposition, patterning, and printing in organic thin film transistors,” Chemistry of Materials, vol. 16, pp. 4824-4840, 2004.
    [6]G. Wang, J. Swensen, D. Moses, and A. J. Heeger, “Increased mobility from regioregular poly(3-hexylthiophene) field-effect transistors,” Journal of Applied Physics, vol. 93, no. 10, pp. 6137-6141, 2003.
    [7]H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw, “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers,” NATURE, vol. 401, pp. 685-688, 1999.
    [8]W. C. Liao, L. C. Hsu, S. Y. Chu, and P. C. Kau, “Imprint lithography for flexible transparent plastic substrates,” Microelectronic Engineering, vol. 75, pp. 145-148, 2004.
    [9]H. Lee, S. Hong, and G. Yang, “Fabrication of nanosize patterned substrates using nano imprinting lithography,” Proceedings of the 3rd Annual International IEEE/EMBS, Special Topic Conference on Microtechnology in Medicine and Biology, Oahu, HI, USA, pp. 237-240, 2005.
    [10]P. C. Kao, S. Y. Chu, T. Y. Chen, C. Y. Zhan, F. C. Hong, C. Y. Chang, L. C. Hsu, W. C. Liao, and M. H. Hon, “Fabrication of large-scaled organic light emitting devices on the flexible substrates using low-pressure imprinting lithography,” IEEE Transactions on Electron Devices, vol. 52, pp. 1722-1726, 2005.
    [11]W. C. Liao, L. C. Hsu, S. Y. Chu, and P. C. Kau, “Back flash imprint lithography for transparent plastic substrates,” Microelectronic Engineering, vol. 77, pp. 250-254, 2005.
    [12]H. Lee, S. Hong, and K. Yang, “Fabrication of 100 nm metal lines on flexible plastic substrateusing ultraviolet curing nanoimprint lithography,” Applied Physics Letters, vol. 88, no. 14, pp. 143112-1-3, 2006.
    [13]Y. C. Chung, Y. H. Chiu, H. J. Liu, Y. F. Chang, C. Y. Cheng, and F. C. N. Hong, “Ultraviolet curing imprint lithography on flexible indium tin oxide substrates,” The Journal of Vacuum Science and Technology B, vol. 24, no. 3, pp. 1377-1383, 2006.
    [14]N. Y. Lee and Y. S. Kim, “A simple imprint method for multi-tiered polymer nanopatterning on large flexible substrates employing a flexible mold and hemispherical PDMS elastomer,” Macromolecular Rapid Communications, vol. 28, pp. 1995-2000, 2007.
    [15]J. H. Lee, K. Yang, S. H. Hong, H. Lee, and K. W. Choi, “Fabrication of 70 nm narrow metal nanowire structure on flexible PET film by nanoimprint lithography,” Microelectronic Engineering, vol. 85, pp. 710-713, 2008.
    [16]M. D. Austin and S. Y. Chou, “Fabrication of 70 nm channel length polymer organic thin-film transistors using nanoimprint lithography,” Applied Physics Letters, vol. 81, no. 23, pp. 4431-4433, 2002.
    [17]Ch. Pannemann, T. Diekmann, and U. Hilleringmann, “Nanometer scale organic thin film transistors with Pentacene,” Microelectronic Engineering, vol. 67-68, pp. 845-852, 2003.
    [18]X. Cheng, D. Li, and L. J. Guo, “A hybridmask–mould lithography scheme and its application in nanoscale organic thin film transistors,” Nanotechnology, vol. 17, pp. 927-932, 2006.
    [19]J. Jo, E. S. Lee, and M. Esashi, “Fabrication of OTFT array on plastic substrate by using nanocontact printing and low temperature process,” 2006 6th IEEE Conference on Nanotechnology, Cincinnati, OH, USA, vol. 2, pp. 588-591, 2006.
    [20]U. Haas, H. Gold, A. Haase, G. Jakopic, and B. Stadlober, “Submicron pentacene-based organic thin film transistors on flexible substrates,” Applied Physics Letters, vol. 91, no. 4, pp. 043511-1-3, 2007.
    [21]K. Ma, T. S. Chung, and R. J. Good, “Surface energy of thermotropic liquid crystalline polyesters and polyesteramide,” Journal of Polymer Science, Part B: Polymer Physics, vol. 36, no. 13, pp. 2327-2337, 1998.
    [22]D. K. Owens and R. C. Wendt, “Estimation of the surface free energy of polymers,” Journal of Applied Polymer Science, vol. 13, no. 8, pp. 1741-1747, 1969.
    [23]J. Sagiv, “Organized monolayers by adsorption, 1. formation and structure of oleophobic mixed monolayers on solid surfaces,” Journal of the American Chemical Society, vol. 102, no. 1, pp. 92-98, 1980.
    [24]T. Nishino, M. Meguro, K. Nakamae, M. Matsushita, and Y. Ueda, “The lowest surface free energy based on -CF3 alignment,” Langmuir, vol. 15, no. 13, pp. 4321-4323, 1999.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE