簡易檢索 / 詳目顯示

研究生: 李世偉
Shih-Wei Lee
論文名稱: 靜電式與電熱式微鑷夾之特性探討與應用
Study of the Characteristics and Applications of Electrostatic and Electro-thermal Micro-grippers
指導教授: 方維倫
Weilieun Fang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 100
中文關鍵詞: 微鑷夾梳狀致動微鑷夾熱致動微鑷夾曲面電極致動微鑷夾黏滯現象水中操作
外文關鍵詞: Micro-gripper, Electrostatic micro-gripper, Electrothermal micro-gripper, Curved-electrode micro-gripper, stick, under water
相關次數: 點閱:61下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去十幾年間,微鑷夾相關文獻主要著重於致動方式、特殊材料應用以及不同結構設計的研究,希望將各種微致動器應用到微尺度的操控。因此,文獻大多以描述致動器的方式,來闡述微鑷夾的特性,如最大出力以及最大位移。然而在微鑷夾夾取物體的過程中的夾持力與位移關係卻鮮少被探討,但是這關係卻是展現一個微鑷夾特性的重要指標。
    因此,本研究針對微機電領域所常應用的兩種致動方式,靜電式與電熱式致動,設計出梳狀致動微鑷夾、冷/熱臂熱致動微鑷夾以及曲面電極致動微鑷夾,並且透過微機電製程技術,在SOI晶片上製作出此三種微鑷夾。透過實驗設計的方式,量測三種微鑷夾的出力、位移以及驅動電壓三者關係,進一步以量化的方式探討其夾持力與位移的關係,以更加了解三種微鑷夾的特性。
    除了特性研究,本研究也針對微鑷夾實際應用上所遭遇的問題,提出兩個簡易、有效的改善方式。首先針對微小尺度所常遭遇到的黏滯問題,本文透過高頻驅動夾臂,使黏附在夾臂表面的微粒有足夠的慣性力脫離夾臂表面,達成釋放的目的。透過此法,本文成功地克服微米尺度下的黏滯問題。此外,本文透過高分子絕緣法,使所有的導電元件都能與水隔絕,解決高電壓於水中應用時所遭遇到的水解問題。並以曲面電極微鑷夾驗證上述兩種改善方法之可行性,將微鑷夾之可操作範圍延伸到更小尺度以及水溶液中。


    In the past tens years, most researches about micro-grippers focused on the mechanism of actuation, special material application, and sophisticated structure design, trying to apply micro-actuators to micro-manipulation. As a result, most researchers described the characteristic of micro-grippers in the way of micro-actuators, by maximum force or displacement. Although he relationship of force and displacement between maximum force and displacement is very important, few researchers placed emphasis on it..
    As a result, electrostatic and electro-thermal micro-grippers have been further studies in this research through the realization and measurement of comb-drive micro-grippers, cold-hot beam micro-grippers, and curved-electrode micro-grippers on SOI wafer.
    In addition to characteristics, two methods to dissolve the problems of applications have been proposed. First one is the high frequency vibration of micro-grippers, by which the stick problem of micro beads has been dissolved above the scale of micro-meter. The other is polymer isolation. By enveloping conductive parts with Parylene C, hydrolysis problem has been solved completely. Through the improved methods, micro-grippers can be applied in smaller scale and under solution.

    第1章 序論 1 1-1 前言 1 1-2 文獻回顧 2 1-2.1 靜電驅動 3 1-2.2 電熱驅動 4 1-2.3 氣壓驅動 6 1-2.4 形狀記憶合金驅動 7 1-2.5 壓電驅動 8 1-2.6 電磁驅動 9 1-2.7 其他夾取方式 10 1-2.8 光夾 11 1-3 研究動機與目標 11 第2章 製造流程與結果 30 2-1 製造流程 30 2-2 製程問題探討 31 2-3 製程結果 33 2-4 後製作流程 34 第3章 微鑷夾特性分析 47 3-1 特性量測方式 47 3-2 梳狀致動微鑷夾量測與分析 48 3-2.1 梳狀致動微鑷夾特性 48 3-2.2 梳狀致動微鑷夾長夾臂剛性問題 49 3-2.3 梳狀致動微鑷夾量測結果 51 3-3 熱致動微鑷夾量測與分析 51 3-3.1 冷熱臂熱致動器特性 51 3-3.2 位移特性探討 52 3-3.3 出力特性探討 53 3-3.4 重現性問題 57 3-4 曲面電極致動微鑷夾量測與分析 57 3-4.1 曲面電極理論特性 58 3-4.2 曲面電極的改良 59 3-4.3 曲面電極特性 60 3-5 三種微鑷夾特性比較 61 第4章 微鑷夾特殊應用 79 4-1 高頻震盪克服黏滯力 79 4-1.1 理論分析 79 4-1.2 實驗驗證 82 4-2 靜電式微鑷夾水中操作 83 4-2.1 絕緣材料的特性要求 84 4-2.2 聚-對二甲苯高分子特性概述 85 4-2.3 微鑷夾水中操作 86 第5章 結論與未來工作 94 5-1 結論與本文貢獻 94 5-2 未來工作 94 參考文獻 96

    [1] R. Gupta, A. Geisberger, G. Hugbes, and P. Foster, Zyvex Corporation, “Manipulation of collagen fibers for mechanical characterization,” Zyvex APPLICATION NOTE 9710.
    [2] N. Sarkar, “Applying microassembly to real-world applications,” Zyvex APPLICATION NOTE 9712.
    [3] M. Mehregany, K. J. Gabriel, and W. S. Trimmer, “Integrated fabrication of polysilicon ,” IEEE Trans. Electron Device 35, pp 719-723, 1988.
    [4] 張仁宗, “微型撓性爪夾機構之實現與應用,” 微系統暨奈米科技協會會刊,第九期, pp 51-64, 2004.
    [5] C. J. Kim, A. P. Pisano, R. S. Muller, and M. G. Lim, “Polysilicon microgripper,” Technical Digest, IEEE International Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, June 1990, pp 48-51.
    [6] C. J. Kim, A. P. Pisano, R. S. Muller, and M. G. Lim, “Overhung electrostatic microgripper,” Transducer’91, San Francisco, CA, June 1991, pp 610-613.
    [7] C. J. Kim, A. P. Pisano, R. S. Muller, and M. G. Lim, “Silicon -processed overhanging microgripper,” Microelectromechanical Systems, 1, March 1992, pp 31-36.
    [8] P. B. Chu and S. J. Pister, “Analysis of closed-loop control of parallel-plate electrostatic microgripper,” Robotic and Automation, San Diego, CA, 1, May, 1994, pp 820-825.
    [9] B. E. Volland, H. Heerlein, and I. W. Rangelow, “Electrostatically driven microgripper,” Microelectronic Engineering, 61-62, pp 1015-1023, 2002.
    [10] M. Mita, H. Kawara, H. Toshiyoshi, M. Ataka and H. Fujita, “An electrostatic 2-dimensional microgripper for nano structure,” Transducer '91, San Francisco, CA, June, 1991, pp 610-613, 24-27.
    [11] W. H. Chu and M. Mehregany, “Microfabricated Tweezers with a large gripping force and a large range of motion,” Technical Digest, IEEE International Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, June 1994, pp 107-110.
    [12] G. Greitmann and R. A. Buser, “Tactile microgripper for automated handling of microparts,” Sensors and Actuators A, 53, pp 410-415, 1996.
    [13] C. G. Keller, and R. T. Howe, “Nickel-filled HEXSIL thermally actuated tweezers,” Transducer’95, Stockholm, Sweden, June, 1995, pp 376-379.
    [14] C. G. Keller, and R. T. Howe, “HEXSIL tweezers for teleoperated micro-assembly,” IEEE MEMS’97, Nagoya, Japan, Jane, 1997, pp 72-77.
    [15] C. S. Pan and W. Hsu, “An electro-thermally and laterally driven polysilicon microactuator,” Journal of Micromechanics and Microengineering, 7, pp 7-13, 1997.
    [16] H. Du, C. Su, M. K. Lim and W. L. Jin, “A micromachined thermally-driven gripper : a numerical and experimental study,” Smart Master. Struct., 8, No.5, pp 616-622, 1999.
    [17] N. Chronis and L. P. Lee, “Polymer MEMS-based microgripper for single cell manipulation,” IEEE MEMS’04, Maastricht, Holland, January, 2004, pp 17-20.
    [18] N. T. Nguyen, S. S. Ho and C. L. Low, “A polymeric microgripper with integrated thermal actuators,” Journal of Micromechanics and Microengineering, 14, pp 969-974, 2004.
    [19] H. Y. Chan and W. J. Lin, “A thermally actuated polymer micro robotic gripper for manipulation of biological cells,” International Conf. on Robotics & Automation, Taipei, Taiwan, 2003, pp 288-293.
    [20] J. Ok, M. Chu and C. J. Kim, “Pneumatically driven microcage for micro-objects in biological liquid,” IEEE MEMS’99, Orlando, FL, January, 1999, pp 459-463.
    [21] S. Butefisch, V. Seidemann and S. Buttgenbach, “Novel micro-pneumatic actuator for MEMS,” Sensors and Actuators A, 97-98, pp 638-645, 2001.
    [22] A. P. Lee, D. R. Ciarlo, P. A. Krulevitch, S. Lehew, J. Trevino and M. A. Northrup, “A practical micrgripper by fine alignment, eutectic bonding and SMA actuation,” Sensors and Actuators A,54, pp 755-759, 1996.
    [23] M. Kohl, E. Just, W. Pfleging and S. Miyazaki, “SMA microgripper with integrated antagonism,” Sensors and Actuators A, 83, pp 208-213, 2000.
    [24] M. Kohl, B. Krevet and E. Just, “SMA microgripper system,” Sensors and Actuators A, 97-98, pp 646-652, 2002.
    [25] M. Kohl and K.D. Strobanek, “Linear microactuators based on the shape memory effect,” Transducer’97, Chicago, IL, June, 1997, pp 785-788.
    [26] S. Ballandras, S. Basrour, L. Robert, S. Megtert, P. Blind, M. Pouilly, P. Bernede and W. Daniau, “Microgrippers fabricated by the LIGA technique,” Sensors and Actuators A, 58, pp 565-272, 1997.
    [27] R. Salim, H. Wurmus, A. Harnisch and D. Hulsenberg, “Microgrippers created in microstructurable glass,” Microsystem Tech., 4, pp 32-34, 1997.
    [28] M. C. Carrozza, A. Menciassi, G. Tiezzi and P. Dario, “The development of a LIGA-microfabricated gripper for micromanipulation tasks,” Journal of Micromechanics and Microengineering, 8, pp 141-143, 1998.
    [29] F. Arai, D. Andou, Y. Nonoda, and T. Fukuda, “Integrated microendeffector for micromanipulation,” IEEE/ASME Transactions on Mechatronics, 3, No. 1, pp 17-23, 1998.
    [30] Y. Suzuki, “Flexible microgripper and its application to micromeasurement of mechanical and thermal properties,” IEEE MEMS’96, San Diego, CA, February, 1996, pp 406-411.
    [31] A. Mensiassi, B. Hannaford, M. C. Carrozza and P. Dario, “4-axis electromagnetic microgripper,” International Conf. on Robotics & Automation, 1999, pp 2899-2904.
    [32] W. Zesch, M. Brunner and A. Weber, “Vacuum tool for handling microobjects with a nanorobot,” International Conf. on Robotics & Automation, Albuquerque, New Mexico, April, 1997, pp 1761-1766.
    [33] C. Bark, T. Binnenbose, G. Vogele, T. Weisener and M. Widmann, “Gripping with low viscosity fluid,” IEEE MEMS’98, Heidelberg, Germany, January, 1998, pp 301-305.
    [34] Y. Rollot, S. Regnier and J. C. Guinot, “Simulation of micro-manipulations : adhesion forces and soecific dynamic models,” International Journal of Adhesion & Adhesives, 19, pp.35-48, 1999.
    [35] Y. Rollot, S. Regnier, S. Haliyo, L. Buchaillot, J. C. Guinot and P. Bidaud, “Experiments on micromanipulation using adhesion forces in unconstrained environment,” International Conf. on Intelligent Robotics and Systems, Las Vegas, CA, 2000, pp 653-658.
    [36] D. S. Haliyo, Y. Rollot, and S. Regnier, “Manipulation of micro-objects using adhesion forces and dynamical effects,” International Conf. on Robotics & Automation ,Washington, DC, May, 2002,pp 1949-1954.
    [37] S. H. Lee, K. C. Lee, S. S. Lee and H.S. Oh, “Fabrication of an electrothermally actuated electrostatic microgripper,” Transducer’03, Boston, MA, June, 2003, pp 552-555.
    [38] D. G. Grier, “A revolution in optical manipulation,” Nature, VOL. 424, pp.810-816, 2003.
    [39] http://www.paryleneinc.com
    [40] R. Legtenberg, A. W. Groeneveld and M. Elwenspoek, “Comb-drive actuators for large displacement,” Journal of Micromechanics and Microengineering, 6, pp 320-329, 1996.
    [41] D. Sameoto, T. Hubbard and M. Kujath, “Operation of electrothermal and electrostatic MUMPs microactuators underwater,” Journal of Micromechanics and Microengineering, 14, pp 1359-1366, 2004.
    [42] John H. Comtois and Victor M. Bright, “Applications for surface-micromachined polysilicon thermal actuators and arrays,” Sensors and Actuators A, 58, pp 19-25, 1997.
    [43] R. Legtenberg, E. Berenschot, M. Elwenspoek and J. Fluitman, “Electrostatic curved electrode actuators,” Journal of Microelectromechanical Systems, 6, NO.3, pp.257-265, 1997.
    [44] Sayanu Pamidighantam, Robert Puers, Kris Baert, and Harrie A C Tilmans, “Pull-in voltage analysis of electrically actuated beam structures with fix-fix and fix-free end conditions,” Journal of Micromechanics and Microengineering, 12, pp 458-464, 2002.
    [45] F. Arai, D. Ando, T. Fukuda, “Micro manipulation based on micro physics-strategy based on attractive force reduction and stress measurement,” International Conference on Intelligent Robots and Systems 95., Volume: 2 , August, 1995, pp 236-241.
    [46] F. Arai, A. Andou and T. Fukuda, “Adhesion forces reduction for micro manipulation based on micro physics,” IEEE MEMS’96, San Diego, CA, February, 1996, pp 354-359.
    [47] Y. Ando, H. Ogawa and Y. Ishikawa, “Estimation of attractive force between approached surfaces”, Proc. 2nd Int. Symp. on Micro Machine and Human Science, Nagoya, 1991, pp 133-138.
    [48] R. S. Fearing, “Survey of sticking effects for micro parts handling,” International Conference on Intelligent Robots and Systems 95., Volume: 2 , August, 1995, pp 212-217.
    [49] W. L. Zhou, H. Y. Chan, K. H. To, W. C. Lai and W. J. Li, “Polymer MEMS actuators for under water micromanipulation,” IEEE/ASME Transactions on Mechatronics, 9, NO.2, pp 334-342,2004.
    [50] P. Selvaganapathy, Y. L. Ki, P. Renaud and C. H. Mastrangelo, “Bubble free electrokinetic pumping,” Journal of Microelectromechanical Systems, 11, NO.5, pp 448-453, 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE