研究生: |
李世偉 Shih-Wei Lee |
---|---|
論文名稱: |
靜電式與電熱式微鑷夾之特性探討與應用 Study of the Characteristics and Applications of Electrostatic and Electro-thermal Micro-grippers |
指導教授: |
方維倫
Weilieun Fang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | 微鑷夾 、梳狀致動微鑷夾 、熱致動微鑷夾 、曲面電極致動微鑷夾 、黏滯現象 、水中操作 |
外文關鍵詞: | Micro-gripper, Electrostatic micro-gripper, Electrothermal micro-gripper, Curved-electrode micro-gripper, stick, under water |
相關次數: | 點閱:61 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過去十幾年間,微鑷夾相關文獻主要著重於致動方式、特殊材料應用以及不同結構設計的研究,希望將各種微致動器應用到微尺度的操控。因此,文獻大多以描述致動器的方式,來闡述微鑷夾的特性,如最大出力以及最大位移。然而在微鑷夾夾取物體的過程中的夾持力與位移關係卻鮮少被探討,但是這關係卻是展現一個微鑷夾特性的重要指標。
因此,本研究針對微機電領域所常應用的兩種致動方式,靜電式與電熱式致動,設計出梳狀致動微鑷夾、冷/熱臂熱致動微鑷夾以及曲面電極致動微鑷夾,並且透過微機電製程技術,在SOI晶片上製作出此三種微鑷夾。透過實驗設計的方式,量測三種微鑷夾的出力、位移以及驅動電壓三者關係,進一步以量化的方式探討其夾持力與位移的關係,以更加了解三種微鑷夾的特性。
除了特性研究,本研究也針對微鑷夾實際應用上所遭遇的問題,提出兩個簡易、有效的改善方式。首先針對微小尺度所常遭遇到的黏滯問題,本文透過高頻驅動夾臂,使黏附在夾臂表面的微粒有足夠的慣性力脫離夾臂表面,達成釋放的目的。透過此法,本文成功地克服微米尺度下的黏滯問題。此外,本文透過高分子絕緣法,使所有的導電元件都能與水隔絕,解決高電壓於水中應用時所遭遇到的水解問題。並以曲面電極微鑷夾驗證上述兩種改善方法之可行性,將微鑷夾之可操作範圍延伸到更小尺度以及水溶液中。
In the past tens years, most researches about micro-grippers focused on the mechanism of actuation, special material application, and sophisticated structure design, trying to apply micro-actuators to micro-manipulation. As a result, most researchers described the characteristic of micro-grippers in the way of micro-actuators, by maximum force or displacement. Although he relationship of force and displacement between maximum force and displacement is very important, few researchers placed emphasis on it..
As a result, electrostatic and electro-thermal micro-grippers have been further studies in this research through the realization and measurement of comb-drive micro-grippers, cold-hot beam micro-grippers, and curved-electrode micro-grippers on SOI wafer.
In addition to characteristics, two methods to dissolve the problems of applications have been proposed. First one is the high frequency vibration of micro-grippers, by which the stick problem of micro beads has been dissolved above the scale of micro-meter. The other is polymer isolation. By enveloping conductive parts with Parylene C, hydrolysis problem has been solved completely. Through the improved methods, micro-grippers can be applied in smaller scale and under solution.
[1] R. Gupta, A. Geisberger, G. Hugbes, and P. Foster, Zyvex Corporation, “Manipulation of collagen fibers for mechanical characterization,” Zyvex APPLICATION NOTE 9710.
[2] N. Sarkar, “Applying microassembly to real-world applications,” Zyvex APPLICATION NOTE 9712.
[3] M. Mehregany, K. J. Gabriel, and W. S. Trimmer, “Integrated fabrication of polysilicon ,” IEEE Trans. Electron Device 35, pp 719-723, 1988.
[4] 張仁宗, “微型撓性爪夾機構之實現與應用,” 微系統暨奈米科技協會會刊,第九期, pp 51-64, 2004.
[5] C. J. Kim, A. P. Pisano, R. S. Muller, and M. G. Lim, “Polysilicon microgripper,” Technical Digest, IEEE International Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, June 1990, pp 48-51.
[6] C. J. Kim, A. P. Pisano, R. S. Muller, and M. G. Lim, “Overhung electrostatic microgripper,” Transducer’91, San Francisco, CA, June 1991, pp 610-613.
[7] C. J. Kim, A. P. Pisano, R. S. Muller, and M. G. Lim, “Silicon -processed overhanging microgripper,” Microelectromechanical Systems, 1, March 1992, pp 31-36.
[8] P. B. Chu and S. J. Pister, “Analysis of closed-loop control of parallel-plate electrostatic microgripper,” Robotic and Automation, San Diego, CA, 1, May, 1994, pp 820-825.
[9] B. E. Volland, H. Heerlein, and I. W. Rangelow, “Electrostatically driven microgripper,” Microelectronic Engineering, 61-62, pp 1015-1023, 2002.
[10] M. Mita, H. Kawara, H. Toshiyoshi, M. Ataka and H. Fujita, “An electrostatic 2-dimensional microgripper for nano structure,” Transducer '91, San Francisco, CA, June, 1991, pp 610-613, 24-27.
[11] W. H. Chu and M. Mehregany, “Microfabricated Tweezers with a large gripping force and a large range of motion,” Technical Digest, IEEE International Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, June 1994, pp 107-110.
[12] G. Greitmann and R. A. Buser, “Tactile microgripper for automated handling of microparts,” Sensors and Actuators A, 53, pp 410-415, 1996.
[13] C. G. Keller, and R. T. Howe, “Nickel-filled HEXSIL thermally actuated tweezers,” Transducer’95, Stockholm, Sweden, June, 1995, pp 376-379.
[14] C. G. Keller, and R. T. Howe, “HEXSIL tweezers for teleoperated micro-assembly,” IEEE MEMS’97, Nagoya, Japan, Jane, 1997, pp 72-77.
[15] C. S. Pan and W. Hsu, “An electro-thermally and laterally driven polysilicon microactuator,” Journal of Micromechanics and Microengineering, 7, pp 7-13, 1997.
[16] H. Du, C. Su, M. K. Lim and W. L. Jin, “A micromachined thermally-driven gripper : a numerical and experimental study,” Smart Master. Struct., 8, No.5, pp 616-622, 1999.
[17] N. Chronis and L. P. Lee, “Polymer MEMS-based microgripper for single cell manipulation,” IEEE MEMS’04, Maastricht, Holland, January, 2004, pp 17-20.
[18] N. T. Nguyen, S. S. Ho and C. L. Low, “A polymeric microgripper with integrated thermal actuators,” Journal of Micromechanics and Microengineering, 14, pp 969-974, 2004.
[19] H. Y. Chan and W. J. Lin, “A thermally actuated polymer micro robotic gripper for manipulation of biological cells,” International Conf. on Robotics & Automation, Taipei, Taiwan, 2003, pp 288-293.
[20] J. Ok, M. Chu and C. J. Kim, “Pneumatically driven microcage for micro-objects in biological liquid,” IEEE MEMS’99, Orlando, FL, January, 1999, pp 459-463.
[21] S. Butefisch, V. Seidemann and S. Buttgenbach, “Novel micro-pneumatic actuator for MEMS,” Sensors and Actuators A, 97-98, pp 638-645, 2001.
[22] A. P. Lee, D. R. Ciarlo, P. A. Krulevitch, S. Lehew, J. Trevino and M. A. Northrup, “A practical micrgripper by fine alignment, eutectic bonding and SMA actuation,” Sensors and Actuators A,54, pp 755-759, 1996.
[23] M. Kohl, E. Just, W. Pfleging and S. Miyazaki, “SMA microgripper with integrated antagonism,” Sensors and Actuators A, 83, pp 208-213, 2000.
[24] M. Kohl, B. Krevet and E. Just, “SMA microgripper system,” Sensors and Actuators A, 97-98, pp 646-652, 2002.
[25] M. Kohl and K.D. Strobanek, “Linear microactuators based on the shape memory effect,” Transducer’97, Chicago, IL, June, 1997, pp 785-788.
[26] S. Ballandras, S. Basrour, L. Robert, S. Megtert, P. Blind, M. Pouilly, P. Bernede and W. Daniau, “Microgrippers fabricated by the LIGA technique,” Sensors and Actuators A, 58, pp 565-272, 1997.
[27] R. Salim, H. Wurmus, A. Harnisch and D. Hulsenberg, “Microgrippers created in microstructurable glass,” Microsystem Tech., 4, pp 32-34, 1997.
[28] M. C. Carrozza, A. Menciassi, G. Tiezzi and P. Dario, “The development of a LIGA-microfabricated gripper for micromanipulation tasks,” Journal of Micromechanics and Microengineering, 8, pp 141-143, 1998.
[29] F. Arai, D. Andou, Y. Nonoda, and T. Fukuda, “Integrated microendeffector for micromanipulation,” IEEE/ASME Transactions on Mechatronics, 3, No. 1, pp 17-23, 1998.
[30] Y. Suzuki, “Flexible microgripper and its application to micromeasurement of mechanical and thermal properties,” IEEE MEMS’96, San Diego, CA, February, 1996, pp 406-411.
[31] A. Mensiassi, B. Hannaford, M. C. Carrozza and P. Dario, “4-axis electromagnetic microgripper,” International Conf. on Robotics & Automation, 1999, pp 2899-2904.
[32] W. Zesch, M. Brunner and A. Weber, “Vacuum tool for handling microobjects with a nanorobot,” International Conf. on Robotics & Automation, Albuquerque, New Mexico, April, 1997, pp 1761-1766.
[33] C. Bark, T. Binnenbose, G. Vogele, T. Weisener and M. Widmann, “Gripping with low viscosity fluid,” IEEE MEMS’98, Heidelberg, Germany, January, 1998, pp 301-305.
[34] Y. Rollot, S. Regnier and J. C. Guinot, “Simulation of micro-manipulations : adhesion forces and soecific dynamic models,” International Journal of Adhesion & Adhesives, 19, pp.35-48, 1999.
[35] Y. Rollot, S. Regnier, S. Haliyo, L. Buchaillot, J. C. Guinot and P. Bidaud, “Experiments on micromanipulation using adhesion forces in unconstrained environment,” International Conf. on Intelligent Robotics and Systems, Las Vegas, CA, 2000, pp 653-658.
[36] D. S. Haliyo, Y. Rollot, and S. Regnier, “Manipulation of micro-objects using adhesion forces and dynamical effects,” International Conf. on Robotics & Automation ,Washington, DC, May, 2002,pp 1949-1954.
[37] S. H. Lee, K. C. Lee, S. S. Lee and H.S. Oh, “Fabrication of an electrothermally actuated electrostatic microgripper,” Transducer’03, Boston, MA, June, 2003, pp 552-555.
[38] D. G. Grier, “A revolution in optical manipulation,” Nature, VOL. 424, pp.810-816, 2003.
[39] http://www.paryleneinc.com
[40] R. Legtenberg, A. W. Groeneveld and M. Elwenspoek, “Comb-drive actuators for large displacement,” Journal of Micromechanics and Microengineering, 6, pp 320-329, 1996.
[41] D. Sameoto, T. Hubbard and M. Kujath, “Operation of electrothermal and electrostatic MUMPs microactuators underwater,” Journal of Micromechanics and Microengineering, 14, pp 1359-1366, 2004.
[42] John H. Comtois and Victor M. Bright, “Applications for surface-micromachined polysilicon thermal actuators and arrays,” Sensors and Actuators A, 58, pp 19-25, 1997.
[43] R. Legtenberg, E. Berenschot, M. Elwenspoek and J. Fluitman, “Electrostatic curved electrode actuators,” Journal of Microelectromechanical Systems, 6, NO.3, pp.257-265, 1997.
[44] Sayanu Pamidighantam, Robert Puers, Kris Baert, and Harrie A C Tilmans, “Pull-in voltage analysis of electrically actuated beam structures with fix-fix and fix-free end conditions,” Journal of Micromechanics and Microengineering, 12, pp 458-464, 2002.
[45] F. Arai, D. Ando, T. Fukuda, “Micro manipulation based on micro physics-strategy based on attractive force reduction and stress measurement,” International Conference on Intelligent Robots and Systems 95., Volume: 2 , August, 1995, pp 236-241.
[46] F. Arai, A. Andou and T. Fukuda, “Adhesion forces reduction for micro manipulation based on micro physics,” IEEE MEMS’96, San Diego, CA, February, 1996, pp 354-359.
[47] Y. Ando, H. Ogawa and Y. Ishikawa, “Estimation of attractive force between approached surfaces”, Proc. 2nd Int. Symp. on Micro Machine and Human Science, Nagoya, 1991, pp 133-138.
[48] R. S. Fearing, “Survey of sticking effects for micro parts handling,” International Conference on Intelligent Robots and Systems 95., Volume: 2 , August, 1995, pp 212-217.
[49] W. L. Zhou, H. Y. Chan, K. H. To, W. C. Lai and W. J. Li, “Polymer MEMS actuators for under water micromanipulation,” IEEE/ASME Transactions on Mechatronics, 9, NO.2, pp 334-342,2004.
[50] P. Selvaganapathy, Y. L. Ki, P. Renaud and C. H. Mastrangelo, “Bubble free electrokinetic pumping,” Journal of Microelectromechanical Systems, 11, NO.5, pp 448-453, 2002.