研究生: |
齊倍慶 Bei-Ching Chi |
---|---|
論文名稱: |
從堆肥中篩選纖維素分解酵素生產菌及其酵素性質研究 Isolation and Cellulase Activity of Cellulolytic Microbes from Compost |
指導教授: |
楊盛行 博士
Shang-Shyng Yang, Ph.D. 張大慈 博士 Dah-Tsyr Chang, Ph.D. |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生命科學系 Department of Life Sciences |
論文出版年: | 2001 |
畢業學年度: | 89 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 堆肥 、纖維素 、纖維素分解酵素 、纖維素分解酵素生產菌 、高溫菌 、中溫菌 、放線菌 |
相關次數: | 點閱:105 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究之目的在分離採集自台灣省彰化縣芳苑鄉畜牧廢棄資源共同處理中心堆肥場,以果菜市場廢棄物為主,再混合豬糞、污泥及茶葉渣的堆肥樣本中所含之纖維素分解酵素生產菌,並進一步探討菌株之生理性質及其纖維素分解酵素能力。在30 ℃和50 ℃自堆肥樣本中篩選出具纖維素分解酵素能力之菌落102個,經純化及繼代培養後獲得49株分離菌株,其中24個分離株為中溫纖維素分解菌株,以L來編號命名(L1 ~ L24),25個分離株為高溫纖維素分解菌株,以H來編號命名(H1 ~ H25)。由菌落外觀判定,49個分離菌株中有19株屬細菌,8株屬真菌以及22株屬放線菌。根據固態培養(剛果紅測試)、液態培養之纖維素分解酵素活性試驗、蛋白質分解酵素活性測試及α-澱粉分解酵素活性發現,高溫纖維素分解菌株-H10(放線菌)和中溫纖維素分解菌株-L14(真菌)其生長較快且酵素活性較高,故為本實驗的目標菌株以深入探討。
在液態培養時,高溫纖維素分解菌株H10的最適生長溫度為45 ℃,最適生長pH值為7.0,而CMCase、avicelase及β-glucosidase分別在50 ℃、45 ℃及45 ℃下具有較高的酵素活性(分別為2.83 ± 0.26、5.43 ± 0.03及2.77 ± 0.19 U);中溫纖維素分解菌株L14其最適生長溫度為35 ℃,其最適生長酸鹼值為pH 7,CMCase、avicelase及β-glucosidase分別在35 ℃、35 ℃及40 ℃下具有較高的酵素活性(分別為0.96 ± 0.12、3.75 ± 0.08及1.25 ± 0.02 U)。分離菌株H10和L14的纖維素分解酵素最適作用溫度相同,CMCase為60 ℃、avicelase及β-glucosidase則是於50 ℃下具有最大的酵素活性。酵素之熱穩定性則隨著酵素保存溫度的上升,酵素殘留活性有降低的趨勢。
因此本研究所篩選的分離菌株H10和L14具有良好纖維素分解酵素活性,同時在高溫時酵素作用表現佳,亦具耐熱性,因此可實際應用於堆肥或其他工業,使得纖維素廢棄物能有效地再利用,以提高纖維素廢棄物的附加價值,達到資源再利用之目的。
To isolate and characterize the cellulolytic microbes, we screen the microbes from the Fan-Yuan compost plant in Changhua, Taiwan at 30 ℃and 50 ℃. Overall 102 colonies have been obtained from the compost at different composting periods. After purification and succession cultivation, forty-nine isolates were survival. They comprised 24 mesophilic microbes (designated as L1 to L24) and 25 thermotolerant microbes (designated as H1 to H25), which were isolated from 30 ℃and 50 ℃, respectively. From the morphological observation, there were 19 bacteria, 8 fungi, and 22 actinomyces. Isolated strains H10 and L14 were finally selected mainly due to their high cellulase activities on solid media with Congo Red Test, and submerged media with the determination of reducing sugars.
In the submerged cultivation, the isolate H10 had the optimal growth temperature 45 ℃, optimal pH at 7.0, and optimal cellulase activities at 45 ℃ to 50 ℃. The isolate L14 had the optimal growth temperature 35 ℃, optimal pH at 7.0, and optimal cellulase activities at 35 ℃ to 40 ℃. Optimal reaction temperature of CMCase, avicelase and β-glucosidase of both isolates H10 and L14 was 60 ℃, 50 ℃ and 50 ℃, respectively.
In conclusion, the cellulolytic isolates H10 and L14 had optimal growth and cellulase activities both at mid to high temperature. Application of these microbes to compost and other related industry should enhance the added values of cellulose containing waste and thereby reach the goal of recycling.
頁次
圖目錄 III
表目錄 VI
壹、 前言 1
貳、 材料與方法 16
一、試驗菌株 16
二、對照菌株 17
三、培養基 17
四、菌種的培養與保存 20
五、菌株篩選策略 20
六、固態纖維素分解酵素活性測試 21
七、蛋白質分解酵素活性測試 21
八、α-澱粉分解酵素活性測試 21
九、孢子懸浮液的製備 22
十、液態培養 22
十一、pH值測定 23
十二、細胞乾重測定 23
十三、粗酵素液製備 23
十四、纖維素分解酵素活性分析-DNS還原糖測定法 23
十五、粗酵素液之特性分析 25
十六、主要儀器和藥品 26
參、 結果與討論 28
一、計數纖維素分解酵素菌之總菌數 28
二、篩菌 28
三、菌株生理特性分析 33
四、纖維素分解酵素性質分析 38
肆、 結論 42
伍、 參考文獻 79
圖 目 錄
頁次
圖一、纖維素的基本結構 44
圖二、纖維素的組成 45
圖三、早期纖維素分解酵素作用機制假說 46
圖四、纖維素分解酵素協同作用機制 47
圖五、纖維素分解酵素受產物回饋抑制模式 48
圖六、圖六、菌株篩選策略流程圖 49
圖七、在50℃下分離菌株No. 88於Mendels-Reese液態培養基之生長情形 50
圖八、不同分離菌株在四種固態培養基下培養四天後酵素活性之比較 51
圖九、不同溫度下分離菌株H10於Mendels-Reese固態培養基生長四天後之菌落大小和剛果紅試驗透明環大小 52
圖十、不同溫度下分離菌株H10於Mendels-Reese液態培養基之生長情形與pH的關係 53
圖十一、於Mendels-Reese液態培養中不同溫度對分離菌株H10和分離菌株L14的CMCase酵素活性之影響 54
圖十二、於Mendels-Reese液態培養中不同溫度對分離菌株H10和分離菌株L14的avicelase酵素活性之影響 55
圖十三、於Mendels-Reese液態培養中不同溫度對分離菌株H10和分離菌株L14的β-glucosidase酵素活性之影響 56
圖十四、分離菌株H10於Mendels-Reese液態培養之最適生長溫度(45℃)的生理特性與纖維素分解酵素活性分析 57
圖十五、分離菌株H10於Mendels-Reese液態培養中之最適生長pH值 58
圖十六、不同溫度下分離菌株L14於Mendels-Reese固態培養基生長四天後之菌落大小和剛果紅試驗透明環大小 59
圖十七、不同溫度下分離菌株L14於Mendels-Reese液態培養基之生長情形與pH的關係 60
圖十八、分離菌株L14於Mendels-Reese液態培養之最適生長溫度(35℃)的生理特性與纖維素分解酵素活性分析 61
圖十九、分離菌株L14於Mendels-Reese液態培養中之最適生長pH值 62
圖二十、分離菌株H10粗酵素液中纖維素分解酵素之最適作用溫度 63
圖二十一、分離菌株H10之粗酵素液分別置於不同溫度下二十小時後其纖維素分解酵素之殘留酵素活性 64
圖二十二、分離菌株L14粗酵素液中纖維素分解酵素之最適作用溫度 65
圖二十三、分離菌株H10之粗酵素液分別置於不同溫度下二十小時後其纖維素分解酵素之殘留酵素活性 66
附錄一、在放大倍率800倍之顯微鏡下觀察分離菌株H10之特徵型態 85
附錄二、在放大倍率800倍之顯微鏡下觀察分離菌株 L14之特徵型態 86
表 目 錄
頁次
表一、具產生纖維素分解酵素能力的微生物 67
表二、各類酵素在工業上之應用 68
表三、89年6月28日於芳苑堆肥場取樣之樣品中纖維素分解菌株變化 69
表四、觀察自芳苑堆肥場中篩選高溫纖維素分解菌株於Mendels-Reese培養基中之菌落特性 70
表五、觀察自芳苑堆肥場中篩選中溫纖維素分解菌株於Mendels-Reese培養基中之菌落特性 71
表六、篩選高溫纖維素分解菌株於Mendels-Reese培養基中30 ℃及50 ℃下培養四天後菌落和透明環直徑大小 72
表七、篩選中溫纖維素分解菌株於Mendels-Reese培養基中30 ℃及50 ℃下培養四天後菌落和透明環直徑大小 73
表八、高溫纖維素分解菌株於Mendels-Reese液態培養基中30 ℃及50 ℃下培養四天後纖維素分解酵素活性初步測試 74
表九、中溫纖維素分解菌株於Mendels-Reese液態培養基中30 ℃及50 ℃下培養四天後纖維素分解酵素活性初步測試 75
表十、不同分離菌株在四種固態培養基下培養四天後酵素活性之比較 76
表十一、分離菌株H10和分離菌株L14生理特性與纖維素分解酵素性質 77
表十二、不同微生物特性之比較 78
王西華。(1989)。農業廢棄物在有機農業之利用。有機農業研討會專集。台中區農業改良場,彰化縣。pp. 217-227.
王西華、趙維良。(1997)。氮肥的施用與環境污染。自然農法專論, 15:11-14。
王正仁、陳孟伶、林畢修平、陳啟祥。(1999)水解酵素在工業上的利用。生物產業, 10:1-11.
王啟浩、梁慈雯。(2000)堆肥的製作與蝦蟹殼再利用。生物資源 生物技術,2:34-37。
石信德、曾敏。(1999)放線菌在農業上的應用。農業世界雜誌,186:26-34。
西澤俊一。(1981)纖維素總論。南山堂出版社,台北市。pp. 24-25。
周姿佑。(1999)。農業纖維素誘導嗜高溫菌生產纖維素分解酵素之探討。國立台灣大學食品科技研究所碩士論文,台北市。
陳乃菁、余碧、邱文石、曾浩洋。(1993)。碳源及培養條件對Trichoderma reesei生產纖維素分解酵素之影響。農林學報,42:9-17。
陳國樹。(1998)。高溫菌在生物肥料製作上應用與其抗菌活性之探討。國立台灣大學農業化學研究所博士論文,台北市。
袁紹英。(1987)。廢棄物生物處理技術。文翔圖書公司,台北市。pp. 1-289。
袁紹英。(1994)。廢棄物堆肥化過程的微生物利用,堆肥技術及其利用研討會論文集。中華生質能源學會,台北市。 pp. 67-83。
張仁福。(1997)。環境微生物學,台北市。pp. 544-545.
張文智。(2000)。纖維素廢棄物之利用。生物資源 生物技術,2:24-27。
張志豪。(2001)。耐高溫及中溫菌的分離及其纖維素分解酵素之研究。國立台灣大學農業化學研究所碩士論文,台北市。
蘇遠志、黃世佑。(1997)。微生物化學工程學,台北市。pp. 74-75。
Acebal, C., Castillon, M. P., Estrada, P., Mata, I., Costa, E., Aguado, J., Romero, D., and Jimeney, F. (1986) Enhanced cellulase production from Trichodermo reesei QM9414 on physically treated wheat straw. Appl. Microbiol. Biotechnol. 24:218-223.
Alexander, M.(1977) Introduction to Soil Microbiology, 2nd ed., p.1-554. John Wiley & Sons, New York.
Atalla, R. H., and VanderHart, D. L.(1984) Native cellulose:A composite if two distinct crystalline forms. Science 223:283-284.
Beguin, P.(1987)Cloning of cellulase gene. Crit. Rev. Biotechnol. 6:129-162.
Beguin, P., and Aubert, J. P.(1992a) La de’gradation de la cellulose par les microorganisms. Amm. Inst. Pasteur/Actualit’es 3, 91-115.
Beguin, P., and Aubert, J. P.(1992b) Cellulase. In:Encyclopedia of Microbiology . Ed. Lederberg, J., Vol. 1, pp. 467-477. Academic Press, New York, USA.
Beguin, P., and Aubert, J. P.(1994)The biological degradation of cellulose. FEMS Microbiol. Rev. 13:25-58.
Bisaria, V. S., and Ghose, T. K. (1981) Biodegradation of cellulosic materials : substrates, microorganisms, enzymes and products. Enz. Microb. Technol. 3:90-104.
Bisaria, V. S., and Mishra, S. (1989) Regulatory aspects of cellulase biosynthesis and secretion. Crit. Rev. Biotech. 9:61-103.
Chen, K. S., Lo, Y. G., Chang, C. H., and Yang, S. S.(1997) Utilization of thermophilic actimycetes in agricultural waste treatment. In:Abstract of the 2nd International Conference on Environmental Chemistry and Geochemistry in the Tropics, p. 24. Kuala Lumpur, Malaysia.
Chen, K. S., Lin, Y. S., and Yang, S. S.(1998) Isolation and application of thermo-tolerant microbes in composting. J. Agric. Assoc. China, New Series No. 183,97-112.
Claeyssens, M., Tilbeurgh, H. V., Tomme, P.. Wood, T. M. and Mcrae, S. I. (1989) Fungal cellulase sysytem. Comparison of the specificities of the cellobiohydrolases isolated from Penicillium pinophilum and Trichoderma reesei. Biochem. J. 261: 819-825.
Coughlan, M. P. (1985) Cellulase: production properties and application. Biochem. Soc. Trans. 13:405-406.
Coughlan, M. P.(1992) Enzymatic hydrolysis of cellulose:an overview. Bioresource Technol. 39:107-115.
Coughlan, M. P., and Hazlewood, G. P. (1993) β-1, 4-D-xylan-degrading enzyme systems:biochemistry, molecular biology and application. Biotech. Appl. Biochem. 17:259-289.
Dierick, N. A. (1989) Biotechnology aids to improve feed and feed digestion:enzyme and fermentation. Aech. Arim. Nutr. Berlin. 39:241-261.
Emsley, J (1977) Plant a tree for chemistry. New Scientist, 8: October 39.
Eriksson, K.E., Pettersson, B. and Westermark, U.(1974)Oxidation: an important enzyme reaction in fungal degradation of cellulose.FEBS Lett. 49:282-5.
Gerber, N. N., and Lechevalier, M. P. (1976)Prodiginine (prodigiosin-like) pigments from Streptomyces and other aerobic Actinomycetes. Can J Microbiol. 22:658-67.
Gallagher, J., Winters, A., Barron, N., McHale, L., and McHale, A. P.(1996) Production of cellulase and β-glucosidase activity during growth of the Actinomycete Micromonospora chalcae on cellulose-containing media. Biotechnol. Lett. 18:537-540.
Ghose, T. K. (1978) Cellulase biosynthesis and hydrolysis of cellulosicsubstance. Adv. Biochem. Eng. 6: 39-43.
Gokhale, D. V., Patil, S. G., and Bastawde, K. B. (1991) Optimization of cellulase production by Aspergillus niger NCIM 1207. Appl. Biotechnol. Biotechnol. 30:99-109.
Heupel, C., Schlochtermeier, A., and Schrempf, H. (1993) Characterization of an intracellular β-glucosidase from Streptomyces reticuli. Enzyme Microb. Technol. 15:127-132.
Heupel, R., and Heldt, H. W.(1994) Protein organization in the matrix of leaf peroxisomes. A multi-enzyme complex involved in photorespiratory metabolism. Eur J Biochem. 220:165-72.
Jung, E., Lao, G., Irwin, D., Barr, B. K., Benjamin, A., and Wilson, D. B.(1993) DNA sequence and expression in Streptomyces lividans of an exoglucanase gene and an endoglucocanse gene from Thermomonospora fusca. Appl. Environ. Microbiol. 59:3032-3043.
Kuga, S., and Brown, R. M. Jr.(1991) Physical structure of cellulose microfibrils:implications for biogenesis. In:Biosynthesis and biodegradation of cellulose. Eds. Haigler, C. H. and Weimer, P. J., pp. 125-142. Marcel Dekker, New York, USA.
Langsford, M. L., Gilkes, N. R., Wakarchuk, W. W., Kilburn, D. G., Miller, R. C. Jr., and Warren, R. A. J. (1984) The cellulase system of Cellulomonas fimi. J. Gen. Microbiol. 130:1367-1376.
Lee, J., Kwon, K. S., and Hah, Y. C. (1996) Regulation ofβ-glucosidase biosynthesis in Aspergillus niduland. FEMS Microbiol. Lett. 135:79-84.
Ljungdabl, L. G.(1979) Physiology of thermophilic bacteria. Adv. Microbiol. Physiol. 19:149-243.
Madarro, A., Pena, J. L., Lequerica, J. L., Valles, S., Gay, R., and Flors, A.(1991)Partial purification and characterization of cellulase from Clostridium cellulolyticum H10.J. Chem. Tech. Biotechnol. 52:393-406.
Mandels, M., and Reese, E. T.(1957) Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. J, Bacteriol. 73: 263-278.
Mandels, M., and Stemberg, S.(1976) Recent advances in cellulase technology. J. Ferment. Technol. 54: 267-275.
Mandels, M. (1985) Applications of cellulases. Biochem. Soc. Trans. 13:414-415.
Miller, G. L. (1959) Use ofdinitrosalicyiic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428.
Parr, J. F., Hornick, S. B., and Kaufman, D. D. (1994) Use of microbial inoculants and organic fertilizers in agricultural production. In:International Seminar on the Use of Micro Organic Fertilizers in Agricultural Production, pp.1-40. Rural Development Administration and Food and Fertilizer Technology Center, Suwon, Korea.
Reese, E. T., Sin, R. G., and Levinson, H. (1950) The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J. Bacteriol. 59: 485-493.
Richmond, P. A.(1991) Occurrence and functions of native cellulose. In:Biosynthesis and Biodegradation of Cellulose. Eds. Haigler, C. H. and Weimer, P. J., pp. 5-23. Marcel Dekker, New York, USA.
Roa, M., Gaikwad, S., Mishra, C., and Deshpande, V. (1988) Induction and catabolite repression of cellulase in Penicillium funiculosum. Appl. Biochem. Biotechnol. 19:129-137.
Saha, B. C., and Bothast, R. J.(1996) Production, purification, and characterization of a highly glucose-tolerant novel β-glucosidase from Candida peltata. Appl. Environ. Microbiol. 62:3165-3170.
Schaub, G. S., and Lenonard, J. J.(1996) Composting:An alternative waste mangement option for food processing industries. Trends Food Sci. Technol. 7:263-268.
Schlochtermeier, A., Nikemeyer, F., and Schrempf, D. (1992) Biochemical and electron microscopic studies of the Streptomyces reticuli cellulase(Avicelase)in its mycelium-associated and extracellular forms. Appl. Environ. Microbiol. 58:3240-3248.
Stoddart, J. F.(1971)Stereochemistry of carbohydrates. Wiley-Interscience. p.112, New York, USA.
Thather, R. M., and Wood, P. J.(1982) Use of Congo red-polysaccharide interactions in eenumeration and characterization of cellulolytic bacteria from the bovine remen. 43:777-780.
Trigo, C., and Ball, A. S.(1994) Production of extracellular enzymes during the solubilisation of straw by Thermomonospora fusca BD25. Appl. Microbiol. Biotechnol. 41:366-372.
Unsitalo, J. M., Nevalainen, K. M. H., Harkki, A. M., Knowles, J. K. C., and Penttila, M. E. (1991) Enzyme production by recombinant Trichoderma reesei strains. J. Biotechnol. 17:35-50.
Wachinger, G., Bronnenmeier, K., Staudenbauer, W. L., and Schrempf, H. (1989) Identification of mycelium-associated cellulase from Streptomyces receticuli. Appl. Environ. Microbiol. 55:2653-2657.
Williams, S. T., and Flowers, T. H.(1978) The influence of pH on starch hydrolysis by neutrophilic and acidophilic Streptomycetes. Microbios. 20:99-106.
Wood, T. M., and McCrae, S. I.(1977) Cellulase from Fusarium solani: purification and properties of the C1 component. Carbohydr. Res. 57:117-33.
Yang, S. S.(1994) Compost and agricultural production in Taiwan. Soil Fertil. Taiwan 1994:29-62.
Yang, S. S.(1997) Preparation and characterization of compost. J. Biomass Energy Soc. China 16:47-62.