研究生: |
劉映吾 |
---|---|
論文名稱: |
以化學氣相沉積法成長石墨烯之研究 The Fabrication and Characterization of Chemical Vapor Deposited Graphene |
指導教授: | 陳正中 |
口試委員: |
齊正中
林大欽 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 石墨烯 、化學氣相沉積 |
相關次數: | 點閱:79 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此論文的目的是針對我們實驗室內建構一套完整的系統,以成長高品質的單層石墨烯(Graphene),並使用各種不同的鑑定方式來判斷樣品的品質。單層石墨烯是一種單由碳元素組成的薄膜材料,厚度很小,被視為極佳的二維材料。由於其特殊的六角晶格結構,造成它的能帶結構也十分特殊,因而展現特別優異的傳輸特性,以及許多二維空間下特有的物理性質。
在這篇論文中,我們使用化學氣相沉積法來成長石墨烯薄膜。並利用光學顯微鏡、拉曼光譜儀做為初步判斷樣品品質的工具。另外,為了作更深入的基礎物理研究,我們將石墨烯樣品轉移至長有二氧化矽層的高摻雜矽基板上,把薄膜製作成霍爾元件,並進行電性量測。一般以化學氣相沉積法成長石墨烯的製程中,這種轉移過程是影響其基本特性表現很重要的一項步驟。因此在文中,我們針對「轉移石墨烯」這個製程,也提出一些想法,並進行實驗,嘗試改善樣品的品質。
建立化學氣相沉積的成長參數,與嘗試不同的轉移方法之後,我們利用量測石墨烯樣品的電性,更進一部分析微觀下製程對於樣品傳輸特性的影響。再根據文獻的理論計算,解釋所量測到的電性行為。實驗結果顯示,我們對轉移製程的調整很有機會改善樣品中帶電雜質的問題。此外,我們認為藉著此次的分析的經驗,未來將有機會完成一套數值分析方法,對電性量測的數據作定量分析。
1. NOVOSELOV, A.K.G.A.K.S., The rise of graphene. nature materials, MARCH 2007. 6.
2. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-9.
3. Wallace, P., The Band Theory of Graphite. Physical Review, 1947. 71(9): p. 622-634.
4. Avouris, P., Graphene: Electronic and Photonic Properties and Devices. Nano Lett, 2010.
5. Nair, R.R., et al., Fine Structure Constant Defines Visual Transparency of Graphene. Science, 2008. 320: p. 1308.
6. Blake, P., et al., Making graphene visible. Applied Physics Letters, 2007. 91(6): p. 063124.
7. Lazzeri, M., et al., Impact of the electron-electron correlation on phonon dispersion: Failure of LDA and GGA DFT functionals in graphene and graphite. Physical Review B, 2008. 78(8): p. 081406.
8. Malard, L.M., et al., Raman spectroscopy in graphene. Physics Reports, 2009. 473(5-6): p. 51-87.
9. Ferrari, A.C., et al., Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters, 2006. 97(18).
10. Bolotin, K.I., et al., Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008. 146(9-10): p. 351-355.
11. Li, X., et al., Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol, 2008. 3(9): p. 538-42.
12. Bae, S., et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 2010. 5: p. 574-578.
13. Tedesco, J.L., et al., Hall effect mobility of epitaxial graphene grown on silicon carbide. Applied Physics Letters, 2009. 95(12): p. 122102.
14. Cooper, D.R., et al., Experimental Review of Graphene. ISRN Condensed Matter Physics, 2012. 2012: p. 1-56.
15. Hass, J., W.A. de Heer, and E.H. Conrad, The growth and morphology of epitaxial multilayer graphene. Journal of Physics: Condensed Matter, 2008. 20(32): p. 323202.
16. HAMILTON, J.C. and J.M. BLAKELY, Carbon Segregation to single crystal surfaces of Pt Pd and Co. Surface Science, 1980. 91: p. 199-217.
17. Sutter, P.W., J.I. Flege, and E.A. Sutter, Epitaxial graphene on ruthenium. Nat Mater, 2008. 7(5): p. 406-11.
18. Kwon, S.-Y., et al., Growth of Semiconducting Graphene on Palladium. Nano Lett, 2009. 9(12): p. 3985-3990.
19. COLEMAN*, R.S.E.A.K.S., graphene film griwth on polycrystalline metals. American Chemical Society, 2012.
20. Vlassiouk, I., et al., Role of Hydrogen in Chemical Vapor Deposition Growth of Large Single-Crystal Graphene. ACS NANO, 2011. 5: p. 6069-6076.
21. Zhang, W., et al., First-Principles Thermodynamics of Graphene Growth on Cu Surfaces. The Journal of Physical Chemistry C, 2011. 115(36): p. 17782-17787.
22. Massalski, T.B., Binary alloy phase diagrams second edition. 1990: p. 18, 839.
23. Yu, Q., et al., Graphene segregated on Ni surfaces and transferred to insulators. Applied Physics Letters, 2008. 93(11): p. 113103.
24. Mattevi, C., H. Kim, and M. Chhowalla, A review of chemical vapour deposition of graphene on copper. Journal of Materials Chemistry, 2011. 21(10): p. 3324.
25. Li, X., et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009. 324(5932): p. 1312-4.
26. Li, X., et al., Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Lett, 2009. 9(12): p. 4359-4363.
27. Adam, S., et al., A self-consistent theory for graphene transport. Proc Natl Acad Sci U S A, 2007. 104(47): p. 18392-7.
28. Tan, Y.W., et al., Measurement of Scattering Rate and Minimum Conductivity in Graphene. Physical Review Letters, 2007. 99(24).
29. Kittel, C., Introduction of solid state physics 8th edtion. 2004: p. 151.
30. Hwang, E., S. Adam, and S. Sarma, Carrier Transport in Two-Dimensional Graphene Layers. Physical Review Letters, 2007. 98(18).
31. Hwang, E. and S. Das Sarma, Screening-induced temperature-dependent transport in two-dimensional graphene. Physical Review B, 2009. 79(16).
32. Hwang, E. and S. Das Sarma, Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene. Physical Review B, 2008. 77(11).
33. Fratini, S. and F. Guinea, Substrate-limited electron dynamics in graphene. Physical Review B, 2008. 77(19).
34. Chen, J.H., et al., Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol, 2008. 3(4): p. 206-9.
35. Li, Q., E.H. Hwang, and S. Das Sarma, Disorder-induced temperature-dependent transport in graphene: Puddles, impurities, activation, and diffusion. Physical Review B, 2011. 84(11).
36. Hwang, S.D.S.a.E.H., Charged Impurity-Scattering-Limited Low-Temperature Resistivity of Low-Density Silicon Inversion Layers. Physical Review Letters, 1999. 83(1): p. 164-167.
37. Heo, J., et al., Nonmonotonic temperature dependent transport in graphene grown by chemical vapor deposition. Physical Review B, 2011. 84(3).
38. Liang, X., et al., Toward Clean and Crackless Transfer of Graphene. ACS NANO, 2011. 5(11): p. 9144-9153.
39. Kobayashi, T., et al., Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Applied Physics Letters, 2013. 102(2): p. 023112.