研究生: |
林凱理 Lin, Kai-Li |
---|---|
論文名稱: |
以DuraSeal作為接合材料應用於週邊神經損傷動物之相關研究 DuraSeal as a Ligature in the Anastomosis of Rat Sciatic Nerve Gap Injury |
指導教授: |
朱一民
Chu, I-Ming 陳甫州 Cheng, Fu-Chou |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 83 |
中文關鍵詞: | 坐骨神經損傷 、週邊神經再生 、纖維蛋白膠 、組織黏著劑 、步態分析 |
外文關鍵詞: | sciatic nerve injury, peripheral nerve regeneration, tissue glue, DuraSeal, CatWalk |
相關次數: | 點閱:86 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用手術縫合的方式來治療神經根撕脫是非常困難的,因為手術的區域非常狹小,而且在接合端存在著手術張力。DuraSeal宣稱具有很強的黏著力而且不會產生神經毒性,因此,我們評估DuraSeal被使用作為修復坐骨神經接合材料的可能性。
神經截斷創傷模式的建立是距近端閉孔肌通道處切除一段長5 mm的神經組織。雄性Sprague-Dawley被分為下列四組:(1)坐骨神經截除後沒有施予任何治療。(2)在神經截斷處以四條手術縫線(10-O nylon)加以固定。(3)在神經截斷處用纖維蛋白膠加以固定。(4)在神經截斷處使用DuraSeal作為固定材料。在手術後的第一週和第八週診斷神經的傳導性及再生情況,並藉由CatWalk、SFI以及電生理等方式來評估運動功能恢復的情形。發炎反應細胞、史旺細胞的凋亡及增生也在第一週時進行研究。
實驗結果發現,在術後的第一週及第八週,不論是神經的連接程度或髓鞘形成,根據水晶紫染色以及Luxol Fast Blue染色結果,證實DuralSeal的治療效果幾乎與手術縫線的效果一樣。而運動功能評估以及電生理參數則說明了DurSeal組的恢復效果與手術縫線組一致,在這兩組的免疫染色中也都有發現神經纖維的增生與BrdU的表達。最後,在巨噬細胞以及嗜中性白血球的數目上,還有細胞凋亡的情形上,這四組都沒有顯著的差異。
結論是相較於使用纖維蛋白膠或沒有任何治療的組別,使用DuraSeal可以得到較佳的神經再生性,而且可以達到跟使用手術縫線一樣的效果。同時也沒有產生神經毒性,因此,在神經的修復上DuraSeal可以被認為是一個合適的神經結合材料。
Repair of root avulsion with suture is not easily accessible due to the narrow surgical field and presence of surgical tension. DuraSeal demonstrated the strong adhesive power without producing the adhesion and neurotoxicity. Herein, we evaluated the possibility of DuraSeal as a substitute in the repair of sciatic nerve gap injury.
The nerve gap model was constructed by excising the sciatic nerve (5mm in length) leaving a 5mm nerve defect between the nerve stumps. Animals were categorized into four groups: Group I: no treatment; Group II: 4 stitches suture; Group III: nerve approximation fixed by tissue glue; Group IV: nerve approximation fixed by DuraSeal. The motor function assessment included the CatWalk and SFI as well electrophysiological study. The nerve continuity and regeneration was examined at one and 8 weeks after injury. The inflammatory cells, Schwann cell apoptosis and Schwann cell proliferation were also investigated at one week.
The achievement of nerve continuity and myelination by DuraSeal approached that by the suture, as demonstrated by crystal violet and Luxol Fast Blue staining at one and 8 weeks, respectively. The motor function and electrophysiological parameter were restored at DuraSeal and suture group. Early expression of neurofilament and BrdU were also observed in these two groups. There was no statistically significant difference in deposits of macrophage and neutrophil cells or cell apoptosis among these four groups.
In conclusion, DuraSeal achieved the same nerve regeneration as compared to that by the suture and produced better regeneration than that by the tissue glue or without any treatment. The accomplishment of nerve regeneration and continuity without causing the neurotoxicity proves the DuraSeal can be used as the ligature in the anastomosis of nerve gap injury.
1.Birch R. Brachial plexus injuries. J Bone Joint Surg 1996;78:986.
2.Pansky B and Allen DJ. Review of neuroscience. MacMillan
Publishing Company 1989;Ch2,Ch4.
3.Marshall RW, Williams DH, Birch R and Bonney G. Operations to restore elbow flexion after brachial plexus injuries. J Bone Joint Surg 1988;70:577.
4.Fournier HD, Mercier P and Menei P. Repair of avulsed ventral nerve roots by direct ventral intraspinal implantation after brachial plexus injury. Hand Clin 2005;21:109.
5.Wieken K, Angioi-Duprez K, Lim A, Marchal L, and Merle M. Nerve anastomosis with glue: comparative histologic study of fibrin and cyanoacrylate glue. J Reconstr Microsurg 2003;19:17.
6.Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, and Darnell J. Molecular Cell Biology. W. H. Freeman 2000;Ch21.
7.Tortora GJ. Principles of Human Anatomy. John Willy & Sons Inc. 1999;Ch1.
8.Gilbert SF. Developmental Biology. Swarthmore College Sunderland: Sinauer Associates 2000;Ch12.
9.Campbell, William W. Evaluation and managemnt of peripheral nerve injury. Clini Neurophy 2008;119:1951.
10.Seddon HJ. A classification of nerve injuries. British Medical Journal 1942;239:4260.
11.Steward O. Assessing the functional significance of lesion induced neural plasticity. Int Rev Neurobiol 1982;23:143
12.Berry M, Rees L, Hall S, Yiu P and Sievers J. Optic axons regene- rate into sciatic nerve isografts only in the presence of Schwann cells. Brain Res Bull 1988;20:223.
13.Stevens A and Lowe JS. Human Histology. Elservier Pte Ltd. 2005;Ch6.
14.Hamburger V. The history of the discovery of the nerve growth factor. J Neurobiol 1993;24:893.
15.Frostick SP, Yin Q and Kemp GJ. Schwann cells, neurotrophic factors, and peripheral nerve regeneration. Microsurgery 1998; 18:397.
16.Kemp SW, Walsh SK and Zochodne DW. A novel method for establishing daily in vivo concentration gradients of soluble nerve growth factor (NGF). J Neurosci Methods 2007;165:83.
17.Boyd JG and Gordon T. A dose-dependent facilitation and inhibition of peripheral nerve regeneration by brain-derived neurotrophic factor. Eur J Neurosci 2002;15:613.
18.Fansa H, Schneider W, Wolf G and Keilhoff G. Influence of insulin-like growth factor-I (IGF-I) on nerve autografts and tissue-engineered nerve grafts. Muscle Nerve 2002;26:87.
19.Vögelin E, Baker JM, Gates J, Dixit V, Constantinescu MA and Jones NF. Effects of local continuous release of brain derived neurotrophic factor (BDNF) on peripheral nerve regeneration in a rat model. Exp Neurol 2006;199:348.
20.Boedts D. Nerve suturing and grafting. Acta Otorhinolaryngol Belg. 1986;40:317.
21.Berger A, Hierner R and Walter GF. The allogenic nerve graft. Acta Neurochir Suppl 2007;100:39.
22.Trumble TE. Peripheral nerve transplantation: the effects of predegenerated grafts and immunosupression. J Neural Transplant Plast 1992;3:39.
23.Padula C, Nicoli S, Aversa V, Colombo P, Falson F, Pirot F and Santi P. Bioadhesive film for dermal and transdermal drug delivery. Eur J Dermatol 2007;17:309.
24.Detweiler MB, Detweiler JG and Fenton J. Sutureless and reduced suture anastomosis of hollow vessels with fibrin glue: a review. J Invest Surg 1999;12:245.
25.Bergel S. Über die Wirkung des Fibrins. Dtsch Med Wochenschr 1909;35:663.
26.Young JZ and Medawar PG. Fibrin suture for peripheral nerve: measurement of rate of regeneration. Lancet 1940;2:126.
27.Jin Y, Dehesdin D, Hermet J, Bagot D'arc C, Creissard P and Tadie M. Comparative experimental study of nerve repairs by classical suture or biological ahesive. Neurochirurgie 1990;36:378.
28.Kuderna H. Clinical application of nerveanastomoses adhesion using fibrinogen (in Herman). Fortschr Kiefer Gesichtchir 1976;21:135.
29.Cruz NI, Debs N and Fiol RE. Evaluation of fibrin glue in rat sciatic nerve repair. Plast Reconstr Surg 1986;78:36973.
30.Sandrini FAL, Pereira-Junior ED, Gay-Escoda C. Rabbit facial nerve anastomosis with fibrin glue: nerve conduction veloxity evaluation. Rev Bras Otorrinolarringol 2007;73:196.
31.Braun RM. Comparative studies of neurorrhaphy and sutureless peripheral nerve repair. Surg Gynecol Obstet 1996;122:15.
32.Moy WJ, Peimer CA, Koniuch MP, Maria Zielezny CH and Kati- kaneni PR. Fibrin seal adhesive versus nonabsorbable microsuture in peripheral nerve repair. J Hand Surg 1988;13A:273.
33.Johnson GW and Smith GW. Effect of methyl cyanoacrylate on the central nervous system: a preliminary evaluation in nerve anastomo- sis. Surg Forum 1963;14:414.
34.Choi BH, Kim BY, Huh JY, Lee SH, Zhu SJ, Jung JH and ChoBP. Microneural anastomosis using cyanoacrylate adhesives. Int J Oral Maxilofac Surg 2004;33:777.
35.Lehmann RAW, Hayes GJ and Leonard F. Toxicity of alky 2-cyan- oacrylates. Arch Surg 1966;93:441.
36.Verreck G, Chun I, Li Y, Kataria R, Zhang Q, Rosenblatt J, Decorte A, Heymans K, Adriaensen J, Bruining M, Van Remoortere M, Borghys H, Meert T, Peers J and Brewster ME. Preparation and physico-chemical characterization of biodegradable nerve guides containing the nerve growth agent sabeluzole. Biomaterials 2005;26:1307.
37.Danielsen N. Regeneration of the rat sciatic nerve in the silicon chamber model. Restor Neurol Neurosci 1990;1:253.
38.Dahlin LB, Zhao Q and Bjursten LM. Nerve regeneration in silicone tubes: distribution of macrophages and interleukin-1 in the formed fibrin matrix. Restor Neurol Neurosci 1995;8:199.
39.Zeng L, Worseg A, Albrecht G, Ohlinger W, Redl H, Grisold W, Zatloukai K, and Schlag G. Bridging of peripheral nerve defects with exogenous laminin-fibrin matrix in silicone tubes in a rat model. Restor Neurol Neurosci 1995;8:107.
40.Woerly S, Plant GW, and Harvey AR.. Neural tissue engineering: from polymer to biohybrid organs. Biomaterials 1996;17:301.
41.Chamberlain LJ, Yannas I V, Arrizabalaga A, Hsu HP, Norregaard T V, and Spector M. Early peripheral nerve healing in collagen and silicone tube implants: myofibroblasts and the cellular response. Biomaterials 1998;19:1393.
42.Kiyotani T, Teramachi M, Takimoto Y, Nakamura T, Shimizu Y, and Endo K. Nerve regeneration across a 25-mm gap bridged by a polyglycolic acid-collagen tube: a histological and electrophysio- logical evaluation of regenerated nerves. Brain Res 1996;740: 66.
43.Chamberlain LJ, Yannas IV, Hsu HP, Strichartz G, and Spector M. Collagen-GAG substrate enhances the quality of nerve regenera- tion through collagen tubes up to level of autograft. Exp Neurol 1998;154:315.
44.Itoh S, Takakuda K, Kawabata S, Aso Y, Kasai K, Itoh H, and Shinomiya K. Evaluation of cross-linking procedures of collagen tubes used in peripheral nerve repair. Biomaterials 2002;23: 4475.
45.Itoh S, Yamaguchi I, Shinomiya K, and Tanaka J. Development of the chitosan tube prepared from crab tendon for nerve regeneration. Science and Technology of Advanced Materials 2003;4: 261.
46.Goraltchouk A, Freier T, and Shoichet MS. Synthesis of degradable poly(L-lactide-co-ethylene glycol) porous tubes by liquid-liquid centrifugal casting for use as nerve guidance channels. Bioma- terials 2005;26:7555.
47.Yang F, Murugan R, Ramakrishna S, Wang X, Ma YX and Wang S. Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials 2004;25:1891.
48.Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr- Esfahani MH and Ramakrishna S. Electrospun poly(epsilon- caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 2008;29:4532.
49.Runge MB, Dadsetan M, Baltrusaitis J, Knight AM, Ruesink T, Lazcano EA, Lu L, Windebank AJ and Yaszemski MJ. The development of electrically conductive polycaprolactone fumarate- polypyrrole composite materials for nerve regeneration. Bioma- terials 2010;31:5916.
50.Matsumoto K, Ohnishi K, Kiyotani T, Sekine T, Ueda H, Nakamura T, Endo K and Shimizu Y. Peripheral nerve regeneration across an 80-mm gap bridged by a polyglycolic acid (PGA)- collagen tube filled with laminin-coated collagen fibers: a histological and electrophysiological evaluation of regenerated nerves. Brain Res 2000;868:315.
51.Itoh S, Yamaguchi I, Suzuki M, Ichinose S, Takakuda K, Kobayashi H, Shinomiya K, and Tanaka J. Hydroxyapatite-coated tendon chitosan tubes with adsorbed laminin peptides facilitate nerve regeneration in vivo. Brain Res 2003;993:111.
52.Rafiuddin Ahmed M, and Jayakumar R. Peripheral nerve regene- ration in RGD peptide incorporated collagen tubes. Brain Res 2003; 993:208.
53.Lee DY, Choi BH, Park JH, Zhu SJ, Kim BY, Huh JY, Lee SH, Jung JH and Kim SH. Nerve regeneration with the use of a poly(l- lactide-co-glycolic acid)-coated collagen tube filled with collagen gel. J Craniomaxillofac Surg 2006;34:50.
54.Uebersax L, Mattotti M and Papaloizos M. Silk fiboin matrices for the controlled release of nerve growth factor (NGF). Biomaterials 2007;28:449.
55.Midha R, Munro CA and Dalton PD. Growth factor enhancement of peripheral nerve regeneration through a novel synthetic hydrogel tube. J Neurosurg 2003;99:555.
56.Ho PR, Coan GM, Cheng ET, Niell C, Tarn DM, Zhou H, Sierra D and Terris DJ. Repair with collagen tubules linked with brain- derived neurotrophic factor and ciliary neurotrophic factor in a rat sciatic nerve injury model. Arch Otolaryngol Head Neck Surg. 1998;124:761.
57.Patel M, Mao L, Wu B and Vandevord PJ. GDNF-chitosan blended nerve guides: a functional study. J Tissue Eng Regen Med 2007; 1:360.
58.Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U and Frisen J. Identification of a neural stem cell in the adult mammalian central nervous system. Cell 1999;96:25.
59.Claudio DS. Neural induaciotn: old problem, new findings, yet more questions. Review. Development 2008;132:2007.
60.Krampera M, Marconi S, Pasini A, Galiè M, Rigotti G, Mosna F, Tinelli M, Lovato L, Anghileri E, Andreini A, Pizzolo G, Sbarbati A and Bonetti B. Induction of neural-like differentiation in human mesenchymal stem cells derived from bone marrow, fat, spleen and thymus. Bone 2007;40:382.
61.Pan HC, Yang DY, Chiu YT, Lai SZ, Wang YC, Chang MH, and Cheng FC. Enhanced regeneration in injured sciatic nerve by human amniotic mesenchymal stem cell. J Clin Neurosci 2006;13:570.
62.Zhang H, Wei YT, Tsang KS, Sun RC, Li J, Huang H, Cui FZ and An YH. Implantation of neural stem cells embedded in hyaluronic acid and collagen composite conduit promoters regeneration in a rabbit facial nerve injury model. J Trans Med 2008;6:67.
63.Suri A, Mehta VS, and Sarkar C. Microneural anastomosis with fibrin glue: an experimental study. Neurol India 2002;50:23.
64.Martins RS, Siqueira MG, Da Silva CF, and Plese JP. Overall assessment of regeneration in peripheral nerve lesion repair using fibrin glue, suture, or a combination of the 2 techniques in a rat model. Which is the ideal choice? Surg Neurol 2005;64 Suppl 1:S1:10.
65.Temple CL, Ross DC, Dunning CE, and Johnson JA. Resistance to disruption and gapping of peripheral nerve repairs: an in vitro biomechanical assessment of techniques. J Reconstr Microsurg 2004;20:645.
66.Tseng YC, Hyon SH, Ikada Y, Shimizu Y, Tamura K, and Hitomi S. In vivo evaluation of 2-cyanoacrylates as surgical adhesives. J Appl Biomater 1990;1:111.
67.Glickman M, Gheissari A, Money S, Martin J, and Ballard JL. A polymeric sealant inhibits anastomotic suture hole bleeding more rapidly than gelfoam/thrombin: results of a randomized controlled trial. Arch Surg 2002;137:326.
68.Leng LZ, Brown S, Anand VK, and Schwartz TH. "Gasket-seal" watertight closure in minimal-access endoscopic cranial base surgery. Neurosurgery 2008;62:ONSE342.
69.Campbell PK, Bennett SL, Driscoll A and Sawhney AS. Evaluation of absorbable surgical sealants: in vitro testing. 2005 (data on file at Confluent Surgical)
70.Jallo J, Ernst FR, Minshall ME. The cost of cerebral spinal fluid leaks after spinal surgery in the USA. Abstract of presentation at Congress of Neurological Surgeons, Oct. 24-29, 2009.
71.Boogarts JD and Grotenhuis JA. Use of a novel absorbable hydrogel for augmentation of dura repair: results of a preliminary clinical study. Neurosurgery 2005;57:146.
72.Grotenhuis JA, Boogarts JD, Bartels RHMA and Beems T. A novel absorbable hydrogel for dural repair: results of a pilot clinical study. 2005 (data on file at Confluent Surgical)
73.de Medinaceli L, Freed WJ and Wyatt RJ. An index of the functional condition of rat sciatic nerve based on measurements made from walking tracks. Exp Neural 1982;77:634.
74.Bain JR, Mackinnon SE and Hunter DA. Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat. Plast Reconstr Surg 1989;83:129.
75.Tuma Júnior P, Dias MD, Arrunátegui G, Duarte GG, Wada A, Cunha AS and Ferreira MC. Effect of hyperbaric oxygen on the regeneration of experimental crush injuries of nerves. Rev Hosp Clin Fac Med Sao Paulo 1999;54:81.
76.Varejão AS, Melo-Pinto P, Meek MF, Filipe VM and Bulas-Cruz J. Methods for the experimental functional assessment of rat sciatic nerve regeneration. Neurol Res 2004;26:186.
77.Reis FA, Belchior ACG, Nicolau, Fonseca TS and Carvalho PTC. Effect of gallium-aluminum-arsenide lase therapy (660Nm) on recovery of the sciatic nerve in rats following neurotmesis lesion and epineural anastomosis: functional analysis. Rev Bras Fisioter São Carlos 2008;12:215.
78.Preston D and Shapiro B. Basic nerve conduction studies. In “Electromyography and neuromuscular disorders” Clinical- electrophysiology correlations. Philadelphia Elsevier 2005;2nd:25.
79.Hendriks WT, Eggers R, Ruitenberg MJ, Blits B, Hamers FP, Verhaagen J, and Boer GJ. Profound differences in spontaneous long-term functional recovery after defined spinal tract lesions in the rat. J Neurotrauma 2006;23:18.
80.Hamers FPT, Lankhorst AJ, Laar TJV, Veldhuis WB and Gispen WH. Automated quantitative analysis during overground locomotion in the Rat: Its application to spinal cord contusion and transection injuries. J Neurotrauma 2001;18:187.
81.Deumens R, Jaken RJ, Marcus MA, and Joosten EA. The CatWalk gait analysis in assessment of both dynamic and static gait changes after adult rat sciatic nerve resection. J Neurosci Methods 2007;164:120.
82.Pan HC, Chen CJ, Cheng FC, Ho SP, Liu MJ, Hwang SM, Chang MH, and Wang YC. Combination of G-CSF Administration and Human Amniotic Fluid Mesenchymal Stem Cell Transplantation Promotes Peripheral Nerve Regeneration. Neurochem Res 2008.
83.Syroid DE, Maycox PJ, Soilu-Hanninen M, Petratos S, Bucci T, Burrola P, Murray S, Cheema S, Lee KF, Lemke G, and Kilpatrick TJ. Induction of postnatal schwann cell death by the low-affinity neurotrophin receptor in vitro and after axotomy. J Neurosci 2000;20:5741.
84.Pan HC, Cheng FC, Chen CJ, Lai SZ, Lee CW, Yang DY, Chang MH, and Ho SP. Post-injury regeneration in rat sciatic nerve facilitated by neurotrophic factors secreted by amniotic fluid mesenchymal stem cells. J Clin Neurosci 2007;14:1089.
85.Aminoff MJ Electrodagosis in Clinical Neurology. New York: Churchhill Livingstone, 1999.
86.Rosen JM, Pham HN, and Hentz VR. Fascicular tubulization: a comparison of experimental nerve repair techniques in the cat. Ann Plast Surg 1989;22:467.
87.Omura K, Ohbayashi M, Sano M, Omura T, Hasegawa T, and Nagano A. The recovery of blood-nerve barrier in crush nerve injury--a quantitative analysis utilizing immunohistochemistry. Brain Res 2004;1001:13.
88.Torigoe K, Tanaka HF, Takahashi A, Awaya A, and Hashimoto K. Basic behavior of migratory Schwann cells in peripheral nerve regeneration. Exp Neurol 1996;137:301.
89.Ornelas L, Padilla L, Di Silvio M, Schalch P, Esperante S, Infante RL, Bustamante JC, Avalos P, Varela D, and Lopez M. Fibrin glue: an alternative technique for nerve coaptation--Part II. Nerve regeneration and histomorphometric assessment. J Reconstr Microsurg 2006;22:123.
90.Sedel L. The results of surgical repair of brachial plexus injuries. J Bone Joint Surg 1982;64:54.
91.Gu YD, Zhang GM and Chen DS. Microsurgical treatment of brachial plexus irreversible avulsion. Chin Med J 1989;102:545.
92.Marshall RW, Willams DH, Birch R and Bonney G. Operations to restore elbow flexion after brachial plexus injuries. J Bone Joint Surg 1988;70:577.
93.Secer HI, Solmaz I, Anik I, Izci Y, Duz B, Daneyemez MK and Gonul E. Surgical outcomes of the brachial plexus lesions caused by gunshot wounds in adults.
94.Martins RS, Siqueira MG, Silva CF, de Godoy BO and Plese JPP. Electrophysiologic assessment of regeneration in rat sciatic nerve repair using suture, fibrin glue or a combination of both techniques.
95.Queral-Godoy E, Valmaseda-Castellon E, Berini-Aytes L, and Gay-Escoda C. Incidence and evolution of inferior alveolar nerve lesions following lower third molar extraction. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2005;99:259.
96.Choi BH, Kim BY, Huh JY, Lee SH, Zhu SJ, Jung JH, and Cho BP. Microneural anastomosis using cyanoacrylate adhesives. Int J Oral Maxillofac Surg 2004;33:777.
97.Dellon AL and Mackinnon SE. Selection of the appropriate parameter to measure neural regeneration. Ann Plast Surg 1989; 23:197.
98.Varejao AS, Melo-Pinto P, Meek MF, Filipe VM and Bulas-Cruz J. Methods for the experimental functional assessment of rat sciatic nerve regeneration. Neurol Res 2004;26:186.
99.Bozkurt A, Deumens R, Scheffel J, O'Dey DM, Weis J, Joosten EA, Führmann T, Brook GA and Pallua N. CatWalk gait analysis in assessment of functional recovery after sciatic nerve injury. J Neurosci Methods 2008;173:91.
100.Vandeputte C, Taymans JM, Casteels C, Coun F, Ni Y, Van Laere K and Baekelandt V. Automated quantitative gait analysis in animal models of movement disorders. BMC Neurosci 2010;11:92.
101.Ferreira-Gomes J, Adães S and Castro-Lopes JM. Assessment of movement-evoked pain in osteoarthritis by the knee-bend and CatWalk tests: a clinically relevant study. J Pain 2008;10:945.
102.Angeby-Möller K, Berge OG and Hamers FP. Using the CatWalk method to assess weight-bearing and pain behaviour in walking rats with ankle joint monoarthritis induced by carrageenan: effects of morphine and rofecoxib. J Neurosci Methods 2008;174:1.
103.Gabriel AF, Marcus MA, Honig WM, Walenkamp GH and Joosten EA. The CatWalk method: a detailed analysis of behavioral changes after acute inflammatory pain in the rat. J Neurosci Methods 2007;163:9
104.Bozkurt A, Deumens R, Scheffel J, O'Dey DM, Weis J, Joosten EA, Fuhrmann T, Brook GA, and Pallua N. CatWalk gait analysis in assessment of functional recovery after sciatic nerve injury. J Neurosci Methods 2008;173:91.
105.Roiz Rde M, Cacho EW, Pazinatto MM, Reis JG, Cliquet A Jr and Barasnevicius-Quagliato EM. Gait analysis comparing Parkinson's disease with healthy elderly subjects. Arq Neuropsiquiatr. 2010;68:81.
106.Kawamura CM, de Morais Filho MC, Barreto MM, de Paula Asa SK, Juliano Y and Novo NF. Comparison between visual and three-dimensional gait analysis in patients with spastic diplegic cerebral palsy. Gait Posture 2007;25:18.
107.Taskinen HS, Olsson T, Bucht A, Khademi M, Svelander L, and Roytta M. Peripheral nerve injury induces endoneurial expression of IFN-gamma, IL-10 and TNF-alpha mRNA. J Neuroimmunol 2000;102:17.
108.Shamash S, Reichert F, and Rotshenker S. The cytokine network of Wallerian degeneration: tumor necrosis factor-alpha, interleukin-1 alpha, and interleukin-1beta. J Neurosci 2002;22:3052.