研究生: |
黃暐婷 Huang, Wei-Ting |
---|---|
論文名稱: |
Affinity Propagation Based Image Clustering with SIFT and Color Features 以親合性互動為基礎的影像分群技術研究 |
指導教授: |
王家祥
Wang, Jia-Shung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 47 |
中文關鍵詞: | 影像分群 |
相關次數: | 點閱:60 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,隨著數位科技的進步,許多人利用數位相機記錄每天的生活,也因此一個人在一年中可以產生數千張的數位相片,所以整理數位相片變成了一個很重要的課題。在相片分群的這個領域中,最主要的難題就是人所認知的相似性和電腦經過特徵抽取找出的相似性有差距。在這篇論文中,我們提出了一個影像分群的方式,在特徵點的抽取上結合了Local Feature 和Global Feature 的特性,我們使用的是SIFT feature 以及CLD feature。因為一張影像可以找出多個SIFT
feature,但是同時也可能找到許多屬於雜訊的點,所以我們先將SIFT feature經過分群的過程過濾掉較不重要的feature,再將這些重要的feature 組合成一個global feature,但是SIFT feature 是不包含顏色資訊的,在論文中我們使用CLD feature 來補足這個缺陷。而在影像分群的步驟中,我們採用affinity propagation 做為分群的演算法,會使用這個分群方式是因為它不需要先指定分群的數目這個特性,應用在實際的相片分群中,事先我們並無法確切掌握應該要分類的群數,然而因為有一些影像會被分到錯誤的群體中,所以我們實做bag of visual word model,並挑選可能分錯的影像出來,利用新的feature 表示法,找出最相似的群重新加入,完成整個影像分群的過程。實驗結果證實,我們提出的方法可以有效並準確的對影像分群,在處理1200 張的影像時,可以有90%的分群正確率,而當資料庫的數量大到3000 張時仍然有83%的正確率。
[1]. Batalas N., Diou C., and Delopoulos A., “Efficient Indexing, Color Descriptors and Browsing in Image Databases,” International Workshop on Semantic Media Adaptation and Personalization, pp.129 – 134, 2006.
[2]. Gomi A., Miyazaki R., Itoh T., and Jia Li, “CAT: A Hierarchical Image Browser Using a Rectangle Packing Technique,” International Conference on Information Visualisation, pp.82 – 87, July 2008.
[3]. Rosenberger, C., and Brun, L.,”Similarity-based matching for face authentication,” International Conference on Pattern Recognition, pp.1-4, Dec 2008.
[4]. Philbin, J., Chum, O., Isard, M., Sivic, J., and Zisserman, A., “large vocabularies and fast spatial matching,” IEEE Conference on Computer Vision and Pattern Recognition, p.1-8, June 2007.
[5]. Jegou, H., Harzallah, H., and Schmid, C., “A contextual dissimilarity measure for accurate and efficient image search,” IEEE Conference on Computer Vision and Pattern Recognition, pp.1-8, June 2007.
[6]. Pengyu Liu, Kebin Jia, Zhuozheng Wang, and Zhuoyi Lv, “A New and Effective Image Retrieval Method Based on Combined Features,” International Conference on Image and Graphics, pp.786 – 790, Aug 2007.
[7]. Dong Kwon Park, Yoon Seok Jeon, Chee Sun Won, Soo-Jun Park, and Seong-Joon Yoo, “A composite histogram for image retrieval,” IEEE International Conference on Multimedia and Expo, vol.1, pp.355 – 358, 30 July-2 Aug 2000.
[8]. Lianping Chen, Guojun Lu, and Dengsheng Zhang, “Effects of different Gabor filters parameters on image retrieval by texture,” International Conference on Multimedia Modellin, pp.273 – 278, Jan 2004.
[9]. Dahl, A.B., Aanaes, H., “Effective image database search via dimensionality reduction,” IEEE Computer Conference on Computer Vision and Pattern Recognition, pp.1 – 6, June 2008.
[10]. Nister, D., and Stewenius, H., “Scalable Recognition with a Vocabulary Tree,” IEEE Computer Conference on Computer Vision and Pattern Recognition, vol.2, pp.2161 - 2168, 2006.
[11]. D.G.Lowe., “Distinctive image features from scale-invariant keypoints,” International Journal of computer vision, pp.91-110, 2004.
[12]. Y. Ke and R. Sukthankar. “Pca-sift: A more distinctive representation for local image descriptors,” IEEE Computer Conference on Computer Vision and Pattern Recognition , pp.506-513, 2004.
[13]. Heng Yang, and Qing Wang, “A novel local feature descriptor for image matching,” IEEE International Conference on Multimedia and Expo, pp.1405-1408, June 23 2008-April 26 2008.
[14]. Walter J. A., Webling D., Essig K., and Ritter H., ”Interactive Hyperbolic Image Browsing – Towards an Integrated Multimedia Navigator,” ACM SIGKDD, pp.111-118, 2006.
[15]. Brendan J. Frey, et al, “Clustering by passing messages between data points,” Science 2007.
[16]. Dueck, D., and Frey, B.J., “Non-metric affinity propagation for unsupervised image categorization,” International Conference on Computer Vision, pp.1-8 , Oct 2007.
[17]. “http://www.leptonica.org/papers/colorquant.pdf”
[18]. http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm
[19]. Mikolajczyk K., and Schmid, C., “A performance evaluation of local descriptors,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.27, pp.1615 – 1630, Oct. 2005.
[20]. Jae-Han Park, Kyung-Wook Park, Seung-Ho Baeg, and Moon-Hong Baeg, “π-SIFT: A photometric and Scale Invariant Feature Transform,” International Conference on Pattern Recognition, pp.1 – 4, Dec 2008.
[21]. Abdel-Hakim, A.E. and Farag, A.A., “CSIFT: A SIFT Descriptor with Color Invariant Characteristics,” IEEE Computer Conference on Computer Vision and Pattern Recognition, vol 2, pp.978 - 1983, 2006.
[22]. Langer, M., and Kuhnert, K.-D., “A new hierarchical approach in robust real-time image feature detection and matching,” International Conference on Pattern Recognition,pp.1-4, Dec. 2008.
[23]. Popescu, A., Moellic, P.-A., and Kanellos, I., “ThemExplorer: Finding and browsing geo-referenced images,” International Workshop on Content-Based Multimedia Indexing, pp.576-583, June 2008.
[24]. Kisku, D.R., Rattani, A., Grosso, E., and Tistarelli, M., “Face Identification by SIFT-based Complete Graph Topology,” IEEE Workshop on Automatic Identification Advanced Technologies, pp.63-68, June 2007.
[25]. Silpa-Anan, C., and Hartley, R., “Optimised KD-trees for fast image descriptor matching,” IEEE Conference on Computer Vision and Pattern Recognition, pp.1-8, June 2008.
[26]. Kisku, D.R., Rattani, A., Tistarelli, M., and Gupta, P., “Graph application on face for personal authentication and recognitions,” International Conference on Control, Automation, Robotics and Vision, pp.1150-1155, Dec 2008.
[27]. Beis, J.S., and Lowe, D.G., “Shape indexing using approximate nearest-neighbour search in high-dimensional spaces,” IEEE Computer Conference on Computer Vision and Pattern Recognition, pp.1000-1006, June 1997.