研究生: |
黃啟發 Huang, Chi-Fa |
---|---|
論文名稱: |
提高生長素和傳送重大影響著C4葉子的高密度葉脈 Elevated auxin biosynthesis and transport underlie high vein density in C4 leaves |
指導教授: |
李文雄
Li, Wen-Hsiun |
口試委員: |
古森本
Ku, Sen-Ben 施明哲 Shih, Ming-Che 劉姿吟 Liu, Tzu-Yin 鄭石通 Jeng, Shih-Tong |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 60 |
中文關鍵詞: | C4光合作用 、生長素 、葉脈密度 |
外文關鍵詞: | C4 photosynthesis, auxin, vein density |
相關次數: | 點閱:52 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
從C3光合作用途徑演化而來的C4光合作用,構成了一個複雜的綜合性狀,包含了葉部生化和結構性的改變。雖然目前已經很清楚C4植物的光合作用的生化機制,但是C4植物葉子結構改變的機制仍然存在許多疑問。在C3植物演化成C4植物的過程中,葉脈密度增加是C4植物的特殊結構特徵,被認為是C3植物演化成C4植物過程中的關鍵步驟,也是未來將C3作物改變成C4作物的重要關鍵。我的假說是:在C4植物葉子的發育過程中,由於生長素的合成與運輸被提高了而促使葉脈密度增加。為了檢測這個假設,我進行了下列的研究。首先,我從同屬於白花菜科(Cleomaceae)的C3醉蝶花(Tarenaya hassleriana)和C4白花菜(Gynandropsis gynandra)葉子發育的早期,每一品種各取得了兩個轉錄體(transcriptomes)。我利用了RNA-seq的技術,比較了在這兩種白花菜科植物的基因表現的差異後,發現在C4白花菜裡,多數與生長素(auxin)合成途徑或負責輸送生長素有關基因的表現量提高,而且降低了色胺酸(生長素的上游前驅物)合成的抑制轉錄因子MYC2的表現量。第二,我發現白花菜發育的葉子裡,具有較高量的生長素;同樣的,在玉米的葉子原基組織(發育成C4光合作用組織)和玉米外殼原基組織(發育成C3光合作用組織)的比較也發現同樣的結果。第三,我發現當C3植物阿拉伯芥myc2發生突變而失去功能時,會造成生長素和植物葉脈密度的提升。第四,利用生長素合成抑制劑,yucasin,來處理白花菜會降低葉子的葉脈密度。第五,利用生長素運送抑制劑,NPA,來處理白花菜和醉蝶花則會減少新生植物葉片高層級葉脈的數目。最後,當負責輸送生長素的基因pin1或lax2發生突變時,會降低葉脈的密度。這些的研究結果指出生長素的合成基因和生長素輸送基因在控制葉脈密度形成上扮演重要的角色。因此我推斷出演化過程中提高生長素的合成和輸送是造成C4植物葉子形成高密度葉脈的分子機制。
The complex syndromes of C4 photosynthesis include several biochemical and anatomical modifications evolved from the ancestral C3 photosynthetic pathway. Although the biochemical modifications in C4 plants are well understood, the mechanisms responsible for C4 anatomical modifications are still largely unknown. High vein density, which is a distinctive anatomical trait of C4 leaves, is central to C3-to-C4 evolution and is considered a key step in the conversion of C3 to C4-like crops in the future. I tested the hypothesis that high vein density in C4 leaves is due to elevated auxin biosynthesis and transport in developing leaves. To test this hypothesis I conducted the following studies. First, I obtained transcriptomes of developing leaves from Tarenaya hassleriana and Gynandropsis gynandra, a C3 and a C4 species in Cleomaceae. I analyzed and compared expressed genes of the two Cleomaceae species by RNA-seq. In C4 G. gynandra many genes promoting auxin biosynthesis or transport were up-regulated while the gene for MYC2, a transcription factor that suppresses the biosynthesis of tryptophan, which is a precursor of auxin, was down-regulated. Second, I found higher auxin contents in the developing leaves of G. gynandra. The same observation held for maize foliar (C4) and husk (C3) leaf primordia. Third, I found increased auxin contents and vein densities in both of the two Arabidopsis thaliana loss-of-function myc2 mutants. Fourth, treating G. gynandra with yucasin, an auxin biosynthesis inhibitor, reduced leaf vein density. Fifth, treating plants with NPA, an auxin transport inhibitor, led to much fewer higher-order (minor) veins in new leaves. Finally, both A. thaliana auxin efflux transporter pin1 and influx transporter lax2 mutants showed reduced vein numbers. These observations point to the central role of auxin biosynthesis and transport in vein density control. I conclude that elevated biosynthesis and transport of auxin is the molecular basis underlying high vein density in C4 leaves.
Anderson, J.P., Badruzsaufari, E., Schenk, P.M., Manners, J.M., Desmond, O.J., Ehlert, C., Maclean, D.J., Ebert, P.R., and Kazan, K. (2004). Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16, 3460-3479.
Baylis, T., Cierlik, I., Sundberg, E., and Mattsson, J. (2013). SHORT INTERNODES/STYLISH genes, regulators of auxin biosynthesis, are involved in leaf vein development in Arabidopsis thaliana. The New phytologist 197, 737-750.
Berleth, T., and Jurgens, G. (1993). The role of the monopteros gene in organising the basal body region of the Arabidopsis embryo. Development 118, 575.
Brautigam, A., Mullick, T., Schliesky, S., and Weber, A.P. (2011a). Critical assessment of assembly strategies for non-model species mRNA-Seq data and application of next-generation sequencing to the comparison of C3 and C4 species. Journal of experimental botany 62, 3093-3102.
Brautigam, A., Kajala, K., Wullenweber, J., Sommer, M., Gagneul, D., Weber, K.L., Carr, K.M., Gowik, U., Mass, J., Lercher, M.J., Westhoff, P., Hibberd, J.M., and Weber, A.P. (2011b). An mRNA blueprint for C4 photosynthesis derived from comparative transcriptomics of closely related C3 and C4 species. Plant physiology 155, 142-156.
Buhler, J., Rishmawi, L., Pflugfelder, D., Huber, G., Scharr, H., Hulskamp, M., Koornneef, M., Schurr, U., and Jahnke, S. (2015). phenoVein-A Tool for Leaf Vein Segmentation and Analysis. Plant physiology 169, 2359-2370.
Chandler, J.W. (2009). Local auxin production: a small contribution to a big field. BioEssays : news and reviews in molecular, cellular and developmental biology 31, 60-70.
Chiwocha, S.D., Abrams, S.R., Ambrose, S.J., Cutler, A.J., Loewen, M., Ross, A.R., and Kermode, A.R. (2003). A method for profiling classes of plant hormones and their metabolites using liquid chromatography-electrospray ionization tandem mass spectrometry: an analysis of hormone regulation of thermodormancy of lettuce (Lactuca sativa L.) seeds. The Plant journal : for cell and molecular biology 35, 405-417.
Christin, P.A., Salamin, N., Savolainen, V., Duvall, M.R., and Besnard, G. (2007). C4 photosynthesis evolved in grasses via parallel adaptive genetic changes. Current biology : CB 17, 1241-1247.
Christin, P.A., Osborne, C.P., Chatelet, D.S., Columbus, J.T., Besnard, G., Hodkinson, T.R., Garrison, L.M., Vorontsova, M.S., and Edwards, E.J. (2013). Anatomical enablers and the evolution of C4 photosynthesis in grasses. Proceedings of the National Academy of Sciences of the United States of America 110, 1381-1386.
Dengler, N.G., and Nelson, T. (1999). Leaf Structure and Development in C4 Plants - Sage, Rowan F. In C4 Plant Biology, R.K. Monson, ed (San Diego: Academic Press), pp. 133-172.
Dombrecht, B., Xue, G.P., Sprague, S.J., Kirkegaard, J.A., Ross, J.J., Reid, J.B., Fitt, G.P., Sewelam, N., Schenk, P.M., Manners, J.M., and Kazan, K. (2007). MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell 19, 2225-2245.
Ehleringer, J.R., Cerling, T.E., and Helliker, B.R. (1997). C4 photosynthesis, atmospheric CO2, and climate. Oecologia 112, 285-299.
Franklin, K.A., Lee, S.H., Patel, D., Kumar, S.V., Spartz, A.K., Gu, C., Ye, S., Yu, P., Breen, G., Cohen, J.D., Wigge, P.A., and Gray, W.M. (2011). Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proceedings of the National Academy of Sciences of the United States of America 108, 20231-20235.
Fukuda, H. (2004). Signals that control plant vascular cell differentiation. Nature reviews. Molecular cell biology 5, 379-391.
Gowik, U., and Westhoff, P. (2011). The path from C3 to C4 photosynthesis. Plant physiology 155, 56-63.
Gowik, U., Bräutigam, A., Weber, K.L., Weber, A.P.M., and Westhoff, P. (2011). Evolution of C4 Photosynthesis in the Genus Flaveria: How Many and Which Genes Does It Take to Make C4? The Plant Cell 23, 2087-2105.
Haberlandt, G.F.J. (1904). Physiologische Pflanzenanatomie. (Leipzig: W. Engelmann).
Hatch, M.D. (1987). C4 photosynthesis: a unique elend of modified biochemistry, anatomy and ultrastructure. Biochimica et Biophysica Acta (BBA) - Reviews on Bioenergetics 895, 81-106.
Hibberd, J.M., Sheehy, J.E., and Langdale, J.A. (2008). Using C4 photosynthesis to increase the yield of rice-rationale and feasibility. Current opinion in plant biology 11, 228-231.
Huang, C.F., Chang, Y.M., Lin, J.J., Yu, C.P., Lin, H.H., Liu, W.Y., Yeh, S., Tu, S.L., Wu, S.H., Ku, M.S., and Li, W.H. (2016). Insights into the regulation of C4 leaf development from comparative transcriptomic analysis. Current opinion in plant biology 30, 1-10.
Iltis, H.H., and Cochrane, T.S. (2007). Studies in the Cleomaceae V: a new genus and ten new combinations for the Flora of North America. Novon a journal of botanical nomenclature from the Missouri Botanical Garden. 17, 447-451.
Iltis, H.H., Hall, J.C., Cochrane, T.S., and Sytsma, K.J. (2011). Studies in the Cleomaceae I. On the Separate Recognition of Capparaceae, Cleomaceae, and Brassicaceae. Annals of the Missouri Botanical Garden 98, 28-36.
Inda, L.A., Torrecilla, P., Catalán, P., and Ruiz-Zapata, T. (2008). Phylogeny of Cleome L. and its close relatives Podandrogyne Ducke and Polanisia Raf. (Cleomoideae, Cleomaceae) based on analysis of nuclear ITS sequences and morphology. Plant Systematics and Evolution 274, 111-126.
Kang, J., and Dengler, N. (2004). Vein Pattern Development in Adult Leaves of Arabidopsis thaliana. International Journal of Plant Sciences 165, 231-242.
Kent, W.J. (2002). BLAT--the BLAST-like alignment tool. Genome research 12, 656-664.
Kulahoglu, C., Denton, A.K., Sommer, M., Mass, J., Schliesky, S., Wrobel, T.J., Berckmans, B., Gongora-Castillo, E., Buell, C.R., Simon, R., De Veylder, L., Brautigam, A., and Weber, A.P. (2014). Comparative transcriptome atlases reveal altered gene expression modules between two Cleomaceae C3 and C4 plant species. Plant Cell 26, 3243-3260.
Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. Nature methods 9, 357-359.
Li, P., Ponnala, L., Gandotra, N., Wang, L., Si, Y., Tausta, S.L., Kebrom, T.H., Provart, N., Patel, R., Myers, C.R., Reidel, E.J., Turgeon, R., Liu, P., Sun, Q., Nelson, T., and Brutnell, T.P. (2010). The developmental dynamics of the maize leaf transcriptome. Nature genetics 42, 1060-1067.
Liu, W.Y., Chang, Y.M., Chen, S.C., Lu, C.H., Wu, Y.H., Lu, M.Y., Chen, D.R., Shih, A.C., Sheue, C.R., Huang, H.C., Yu, C.P., Lin, H.H., Shiu, S.H., Ku, M.S., and Li, W.H. (2013). Anatomical and transcriptional dynamics of maize embryonic leaves during seed germination. Proceedings of the National Academy of Sciences of the United States of America 110, 3979-3984.
Lomax, T.L., Muday, G.K., and Rubery, P.H. (1995). Auxin Transport. In Plant Hormones: Physiology, Biochemistry and Molecular Biology, P. J. Davies, ed (Dordrecht: Springer Netherlands), pp. 509-530.
Ma, J.F., Goto, S., Tamai, K., and Ichii, M. (2001). Role of root hairs and lateral roots in silicon uptake by rice. Plant physiology 127, 1773-1780.
Magoc, T., and Salzberg, S.L. (2011). FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics (Oxford, England) 27, 2957-2963.
Mano, Y., and Nemoto, K. (2012). The pathway of auxin biosynthesis in plants. Journal of experimental botany 63, 2853-2872.
Mao, J.L., Miao, Z.Q., Wang, Z., Yu, L.H., Cai, X.T., and Xiang, C.B. (2016). Arabidopsis ERF1 Mediates Cross-Talk between Ethylene and Auxin Biosynthesis during Primary Root Elongation by Regulating ASA1 Expression. PLoS genetics 12, e1005760.
Martinez-Fernandez, I., Sanchis, S., Marini, N., Balanza, V., Ballester, P., Navarrete-Gomez, M., Oliveira, A.C., Colombo, L., and Ferrandiz, C. (2014). The effect of NGATHA altered activity on auxin signaling pathways within the Arabidopsis gynoecium. Frontiers in plant science 5, 210.
Mattsson, J., Sung, Z.R., and Berleth, T. (1999). Responses of plant vascular systems to auxin transport inhibition. Development 126, 2979-2991.
Mattsson, J., Ckurshumova, W., and Berleth, T. (2003). Auxin signaling in Arabidopsis leaf vascular development. Plant physiology 131, 1327-1339.
McKown, A.D., and Dengler, N.G. (2010). Vein patterning and evolution in C4 plants. Botany 88, 775-786.
Nishimura, T., Hayashi, K., Suzuki, H., Gyohda, A., Takaoka, C., Sakaguchi, Y., Matsumoto, S., Kasahara, H., Sakai, T., Kato, J., Kamiya, Y., and Koshiba, T. (2014). Yucasin is a potent inhibitor of YUCCA, a key enzyme in auxin biosynthesis. The Plant journal : for cell and molecular biology 77, 352-366.
Normanly, J. (2010). Approaching Cellular and Molecular Resolution of Auxin Biosynthesis and Metabolism. Cold Spring Harbor Perspectives in Biology 2, a001594.
Novak, O., Henykova, E., Sairanen, I., Kowalczyk, M., Pospisil, T., and Ljung, K. (2012). Tissue-specific profiling of the Arabidopsis thaliana auxin metabolome. The Plant journal : for cell and molecular biology 72, 523-536.
O'Malley, R.C., Huang, S.C., Song, L., Lewsey, M.G., Bartlett, A., Nery, J.R., Galli, M., Gallavotti, A., and Ecker, J.R. (2016). Cistrome and Epicistrome Features Shape the Regulatory DNA Landscape. Cell 165, 1280-1292.
Osborne, C.P., and Freckleton, R.P. (2009). Ecological selection pressures for C4 photosynthesis in the grasses. Proceedings of the Royal Society B: Biological Sciences 276, 1753-1760.
Pick, T.R., Brautigam, A., Schluter, U., Denton, A.K., Colmsee, C., Scholz, U., Fahnenstich, H., Pieruschka, R., Rascher, U., Sonnewald, U., and Weber, A.P. (2011). Systems analysis of a maize leaf developmental gradient redefines the current C4 model and provides candidates for regulation. Plant Cell 23, 4208-4220.
Pinon, V., Prasad, K., Grigg, S.P., Sanchez-Perez, G.F., and Scheres, B. (2013). Local auxin biosynthesis regulation by PLETHORA transcription factors controls phyllotaxis in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 110, 1107-1112.
Rizal, G., Thakur, V., Dionora, J., Karki, S., Wanchana, S., Acebron, K., Larazo, N., Garcia, R., Mabilangan, A., Montecillo, F., Danila, F., Mogul, R., Pablico, P., Leung, H., Langdale, J.A., Sheehy, J., Kelly, S., and Quick, W.P. (2015). Two forward genetic screens for vein density mutants in sorghum converge on a cytochrome P450 gene in the brassinosteroid pathway. The Plant journal : for cell and molecular biology 84, 257-266.
Roberts, A., and Pachter, L. (2013). Streaming fragment assignment for real-time analysis of sequencing experiments. Nature methods 10, 71-73.
Sachs, T. (1981). The Control of the Patterned Differentiation of Vascular Tissues. In Advances in Botanical Research, H.W. Woolhouse, ed (Academic Press), pp. 151-262.
Sachs, T. (1991). Cell polarity and tissue patterning in plants. Development 113, 83-93.
Sage, R.F. (2004). The evolution of C4 photosynthesis. New Phytologist 161, 341-370.
Scarpella, E., Marcos, D., Friml, J., and Berleth, T. (2006). Control of leaf vascular patterning by polar auxin transport. Genes & development 20, 1015-1027.
Sieburth, L.E. (1999). Auxin Is Required for Leaf Vein Pattern in Arabidopsis. Plant physiology 121, 1179-1190.
Sinha, N.R., and Kellogg, E.A. (1996). Parallelism and Diversity in Multiple Origins of C4 Photosynthesis in the Grass Family. American Journal of Botany 83, 1458-1470.
Spurr, A.R. (1969). A low-viscosity epoxy resin embedding medium for electron microscopy. Journal of ultrastructure research 26, 31-43.
Stone, S.L., Braybrook, S.A., Paula, S.L., Kwong, L.W., Meuser, J., Pelletier, J., Hsieh, T.F., Fischer, R.L., Goldberg, R.B., and Harada, J.J. (2008). Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity: Implications for somatic embryogenesis. Proceedings of the National Academy of Sciences of the United States of America 105, 3151-3156.
Uggla, C., Moritz, T., Sandberg, G., and Sundberg, B. (1996). Auxin as a positional signal in pattern formation in plants. Proceedings of the National Academy of Sciences of the United States of America 93, 9282-9286.
Wang, L., Czedik-Eysenberg, A., Mertz, R.A., Si, Y., Tohge, T., Nunes-Nesi, A., Arrivault, S., Dedow, L.K., Bryant, D.W., Zhou, W., Xu, J., Weissmann, S., Studer, A., Li, P., Zhang, C., LaRue, T., Shao, Y., Ding, Z., Sun, Q., Patel, R.V., Turgeon, R., Zhu, X., Provart, N.J., Mockler, T.C., Fernie, A.R., Stitt, M., Liu, P., and Brutnell, T.P. (2014). Comparative analyses of C4 and C3 photosynthesis in developing leaves of maize and rice. Nature biotechnology 32, 1158-1165.
Wang, P., Vlad, D., and Langdale, J.A. (2016). Finding the genes to build C4 rice. Current opinion in plant biology 31, 44-50.
Wang, P., Kelly, S., Fouracre, J.P., and Langdale, J.A. (2013). Genome-wide transcript analysis of early maize leaf development reveals gene cohorts associated with the differentiation of C4 Kranz anatomy. The Plant journal : for cell and molecular biology 75, 656-670.
Woodward, A.W., and Bartel, B. (2005). Auxin: regulation, action, and interaction. Annals of botany 95, 707-735.
Yu, C.P., Chen, S.C., Chang, Y.M., Liu, W.Y., Lin, H.H., Lin, J.J., Chen, H.J., Lu, Y.J., Wu, Y.H., Lu, M.Y., Lu, C.H., Shih, A.C., Ku, M.S., Shiu, S.H., Wu, S.H., and Li, W.H. (2015). Transcriptome dynamics of developing maize leaves and genomewide prediction of cis elements and their cognate transcription factors. Proceedings of the National Academy of Sciences of the United States of America 112, E2477-2486.
Zhiponova, M.K., Vanhoutte, I., Boudolf, V., Betti, C., Dhondt, S., Coppens, F., Mylle, E., Maes, S., Gonzalez-Garcia, M.P., Cano-Delgado, A.I., Inze, D., Beemster, G.T., De Veylder, L., and Russinova, E. (2013). Brassinosteroid production and signaling differentially control cell division and expansion in the leaf. The New phytologist 197, 490-502.
Zhou, X.Y., Song, L., and Xue, H.W. (2013). Brassinosteroids regulate the differential growth of Arabidopsis hypocotyls through auxin signaling components IAA19 and ARF7. Molecular plant 6, 887-904.