簡易檢索 / 詳目顯示

研究生: 帕蘇基
Pawar, Sujeet
論文名稱: 用於質譜測序和功能分析的不對稱N-聚醣的合成
Synthesis of Asymmetric N-glycans for Mass spectrometry Sequencing and Functional analysis
指導教授: 王聖凱
Wang, Sheng-Kai
口試委員: 吳宗益
Wu, Chung-Yi
謝俊結
Jiun, Jie Shie
王正中
Cheng, ChungWang
吳宗益
Wu, Chung-Yi
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 246
中文關鍵詞: 流感酶促的糖阵列多样化合成聚糖
外文關鍵詞: Influenza, Enzymatic, GlycanArray, Diversification, Synthesis, NGlycan
相關次數: 點閱:81下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 細胞表面的N型聚醣具有獨特的特徵,可被不同的聚醣結合蛋白(GBP)和病原體結合及辨識。人類中大多數N型聚醣是不對稱和存在結構異構物,但是由於缺乏具結構異構物之純N型聚醣,人們對其生物學功能的了解還不夠。在這項研究中,我們先利用化學方法製備用於可被岩藻糖和唾液酸轉移酶接受的通用核心結構,再以此兩種酵素接上岩藻糖或唾液酸形成最後的不對稱N型聚醣,此方法提供不對稱N型聚醣合成的改進策略。利用此方法合成出產的26個在不同觸角上帶有唾液酸殘基的純N型聚醣接著以點片機製成醣晶片,用於分析禽流感病毒(H5N2)的血凝素(HA)的結合特異性。我們發現不同分支的N-乙酰氨基葡萄糖(GlcNAc)連接的Neu5Ac-Gal異構物表現出不同的結合力,不同分支上具末端半乳糖的異構物對結合力的影響較小。總體而言,醣晶片分析顯示了不同異構物間對HA的結合力差別。為了進一步開發質譜法以解析N型聚醣異構物,我們對三天線和四天線N-聚醣進行了CID MS2 / MS3裂解,裂解過程產生了B和Y離子。片段化過程中產生的結構指紋有助於開發利用質譜儀解析N型聚醣異構物的新方法。


    N-glycans on the cell surface provide distinct signatures that are recognized by different glycan-binding proteins (GBPs) and pathogens. Most glycans in humans are asymmetric and isomeric, yet their biological functions are not well understood due to their lack of availability. In this study, we have developed an improved strategy for asymmetric N-glycan assembly and diversification using the designed common core substrates prepared chemically for selective enzymatic fucosylation and sialylation. The resulted 26 well-defined glycans that carry the sialic acid residue on different antennae were used in a microarray format as a representative application to profile the binding specificity of hemagglutinin (HA) from the avian influenza virus (H5N2). We found that the Neu5Ac-Gal epitope linked to the N-acetylglucosamine (GlcNAc) of different branches exhibited distinct binding affinity and the terminal galactose on different branches had minor influence in the binding. Overall, the microarray analysis showed branch-biased and context-based recognition patterns. To elucidate the structures of N-glycans under mass spectrometry, we carried out CID MS2/ MS3 fragmentation of tri-antennary and tetra-antennary N-glycans and the outcome of the fragmentation process produced B and Y ions. The structural fingerprints generated in the fragmentation could be useful for the development of new glycan sequencing methods.

    ABSTRACT…………………………………………….....................................................................i 中文摘要…………………………………………………………………………………………….............ii LIST OF FIGURES………………………………………………………………………………..............v LIST OF TABLES…………………………………….....................................................................vii LIST OF SCHEMES…………………………………………………………………………….........….viii ABBREVATIONS…………………………………………………………………………………...........x Chapter 1 Introduction……………………………………………………………………………....1 1.1. Structural features of N-glycans……………………………………………………….....2 1.2. N-glycans of cell surface proteins…………………………………………………….....3 1.3. N-glycans in monoclonal antibody……………………………………………………..5 1.4. Strategy for the synthesis of asymmetric glycans ……………………………....6 1.4.1 Convergent strategy………………………………………………………………...............6 1.4.2. Divergent strategy…………………………………………………………………..............8 Chapter 2 Synthetic Strategy for Asymmetric Glycan cores……………………….10 2.1. Synthesis of modular building blocks for core structures……………….......14 2.1.1. Synthesis of disaccharide and trisaccharide building blocks..................14 2.1.2. Synthesis of OAlloc containing disaccharide building blocks................15 2.1.3. Synthesis of tetra-saccharide building blocks……………………..................15 2.1.4. Synthesis of tri-antennary glycans………………………………………................17 2.1.5. Synthesis of tetra-antennary glycans……………………………………..............20 Chapter 3 Enzymatic Diversification on Asymmetric Glycan cores……………24 3.1. Enzymatic fucosylation…………………………………………………………………….....24 3.2. Enzymatic sialylation………………………………………………………………………......28 Chapter 4 Chemical synthesis of Tri- and Tetra-antennary Asymmetric Glycan........................................................................................................................................29 Chapter 5 Mass studies of Asymmetric N-glycans……………………………………..39 5.1 Mass spectra analysis of galactose containing N-glycan isomers…...........41 5.2 Mass spectra analysis of sialo-containing N-glycan isomers………….........44 Chapter 6 Glyan Array studies on Asymmetric N-glycans…………………………....49 Chapter 7 Conclusion………………………………………………………………………………........53 Chapter 8 Material and Methods……………………………………………............................54 REFERENCES………………………………………………………………………………………..............141 1H and 13C NMR Spectras…………………………………………………………………………...144

    1. Varki, A. Nature. 2007, 446 (7139), 1023-9.
    2. (a) Yang, Y.; Barendregt, A.; Kamerling, J. P.; Heck, A. J., Analytical chemistry. 2013, 85 (24),
    12037-45; (b) ang, S.; Zhang, H. Curr.Protoc.Chem. Biol. 2014, 6 (3), 191-208.
    3. Bieberich, E., Adv Neu. 2014, 47-70, 4939-1154.
    4. Takahashi, M.; Hasegawa, Y.; Gao, C., Kurokiand, Y., Taniguchi, N. Clin. Sci. 2016, 130, 1781–1792
    5. Hsin-Yung, Y.; Ying-Chih, L.; Nai-Yu, C.; Chia-Feng, T.; Yi-Ting, W.; Yu-Ju, C.; Tsui- Ling, H.;
    Pan-Chyr, Y.; Wong, C.H. Proc. Natl. Acad. Sci. USA 2015,112, 6955-60.
    6. Tokito, T.; Jougasaki, M. Int. J. Mol. Sci. 2016, 17, 1178.
    7. Stillman, B.N.; Hsu, D.K.; Pang, M.; Brewer, C. F.; Johnson, P.; Liu, F.T.; Baum, L.G. J.Immunol 2006, 176,778-789.
    8. Gray,C.J.; Migas, L.G.; Barran, P.E.; Pagel, K.; Seeberger, P.H.; Eyers, C.E.; Boons, G.J.; Pohl, N.L.; Isabelle, B.; Widmalm, G.; Flitsch, S.L. J. Am. Chem. Soc. 2019, 141, 37, 14463-14479.
    9. Nadeem, T.; Khan, M.A.; ijaz, B.; Ahmed, N.; Rahman, Z.U.; Latif, M.S.; Ali, Q.; Rana, M.A.Cancer Res 2018, 78, 2787-2798.
    10. Matsuo, I.; Wada, M.; Manabe, S.; Yamaguchi, Y.; Otake, K.; Kato, K.; and Ito, Y. J. Am. Chem.Soc. 2003.125, 3402− 3403.
    11. Walczak, M.A.; Hayashida, J.; Danishefsky, S.J. J. Am. Chem. Soc. 2013 135 (12), 4700-4703.
    12. Shivatare, S. S.; Chang, S.-H.; Tsai, T.-I.; Ren, C.-T.; Chuang, H.-Y.; Hsu, L.; Lin, C.-W.; Li, S.-T.; Wu, C.-Y.; Wong, C.-H. J. Am. Chem. Soc. 2013,135, 15382−15391.
    13. Wang, Z.; Chinoy, Z. S.; Ambre, S. G.; Peng, W.; McBride, R.;de Vries, R. P.; Glushka, J.; Paulson,J. C.; Boons, G. J. Science. 2013, 341, 379−383.
    14. Li, L.; Liu, Y. P.; Ma, C.; Qu, J. Y.; Calderon, A. D.; Wu, B. L.; Wei, N.; Wang, X.; Guo, Y. X.;Xiao, Z. Y.; Song, J.; Sugiarto, G.; Li, Y. H.; Yu, H.; Chen, X.; Wang, P. G. Chem. Sci. 2015, 6 (10), 5652 −5661.
    15. Liu, L.; Prudden, A. R.; Capicciotti, C. J.; Bosman, G. P.; Yang, J.-Y.; Chapla, D. G.; Moremen, K.W.; Boons, G.-J. Nat. Chem. 2019, 11, 161−169.
    16. Gagarinov, I, A.; Li, T.; Wei , N.; Toraño , J.S.; de Vries , R.P.; Wolfert, M.A. Angew. Chem. Int . Ed. 2019, 58,10547–10552.
    17. Kajihara, Y. Curr. Med. Chem. 2005, 12 (5)527–550.
    18. Seko, A.; Koketsu, M.; Nishizono, M.; Enoki Y.; Ibrahim, H.R.; Juneja, L.R.; Yamamoto, T.
    Biochim. et Bio. Acta. 1997, 1335, 23–32.
    19. Sun, B.; Boa, w.; Tian, X.; Li, M.; Liu, H. Dong, J. Huang, W. Carbohydr.Res. 2014, 396, 62–69.
    20 Li, T.; Liu, L.; Wei, N.; Yang, J.-Y.; Chapla, D. G.; Moremen, K. W.; Boons, G.-J. Nat. Chem. 2019, 11, 229−236.
    21. Le Mai Hoang, K.; Pardo-Vargas, A.; Zhu, Y.; Yu, Y.; Loria, M.; Delbianco, M.; Seeberger, P. H.J. Am. Chem.Soc. 2019, 141, 9079− 9086.
    22. (a) Shivatare, S. S.; Chang, S.-H.; Tsai, T.-I.; Tseng, S. Y.; Shivatare, V. S.; Lin, Y.-S.; Cheng, Y.-Y.; Ren, C.- T.; Lee, C.-C. D.; Pawar, S.; Tsai, C.- S.; Shih, H.-W.; Zeng, Y.-F.; Liang, C.-H.; Kwong, P. D.; Burton, D. R.; Wu, C.-Y.; Wong, C.-H. Nat. Chem. 2016, 8, 338−346.
    23. Magalhaes, A.; Duarte, H. O.; Reis, C. A. Cancer Cell. 2017, 31, 733−735.
    24. Lo, H.-J.; Krasnova, L.; Dey, S.; Cheng, T.; Liu, H.; Tsai, T.-I.; Wu, K. B.; Wu, C.-Y.; Wong, C.-H. J. Am.Chem. Soc. 2019, 141 (16), 6484-6488. (b) Li, C.; Wang, L.-X. Chem. Rev. 2018, 118, 8359.
    25. (a) Ma, Y. L.; Vedernikova, I.; Vanden Heuvel, H.; Claeys, M. J. Am. Soc. Mass Spectrom. 2000,11,136–144. (b) Franz, A.H.; Lebrilla, C. B. J. Am. Soc. Mass Spectrom. 2002,13, 325 –337.
    26. Calderon, A.D.; Lei, L.; Wang, P.G. Pure Appl. Chem. 2017, 89(7), 911–920.
    27. Blanas, A.; Sahasrabudhe, N.M.; Rodríguez, E.; van Kooyk, Y.; van Vliet, S.J. Front. Oncol. 2018, 8:39.
    28. García-García, A., Ceballos-Laita, L., Serna, S. Nat Commun 11, 973 (2020).
    29. Chao, Li.; Zhu, S.; Ma, C.; Wang. L.X. J. Am. Chem.Soc. 2017, 139,42, 15074-15087.
    30. Tsai, T. I.; Lee, H. Y.; Chang, S. H.; Wang, C. H.; Tu, Y. C.; Lin, Y. C.; Hwang, D. R.; Wu, C. Y.; Wong, C. H. J. Am. Chem. Soc. 2013, 135,14831−14839.
    31. C. H. Hsu, S. C. Hung, C. Y. Wu, C. H. Wong, Angew.Chem. Int. Ed. 2011, 50, 11872 –11923.
    32. a) K. Fujikawa, A.; Imamura, H.; Ishida, M. Kiso. Carbohydrate Research. 2008, 343, 2729–2734; b) Mandapati, A. R.; Rajender, S.; Shaw, J.; Crich, D. Angew. Chem. Int. Ed. 2015, 54, 1275 –1278; c) Hanashima, S.; castagner, B.; esposito, D.; nokami, T.; Seeburger, P.H. Organic letters. 2007, 9, 1777-1779; d) H. Y. Chuang, C. T. Ren, C. A. Chao, C. Y. WU, S. S. Shiavtare, T. J. R. Cheng, C. Y. WU, C. H. Wong, J. Am. Chem. Soc. 2013, 135, 11140−11150; e) Wang, C.H.; Li, S.T.; Lin, T.L.; Cheng, Y.Y.; Mong, K.K.T.; Wu, C.Y.; Wong, C.H. Angew. Chem. Int. Ed. 2013, 52, 9157 –9161.
    33. Sun,B.; Srinivasan, B.; Huang, X. Chemistry. 2008, 14, 7072–7081.
    34. Navuluri, C.; Crich, D. Angew. Chem. Int. Ed. 2013, 521, 1339-42.
    35. Hsu, C.H.; Chu, K.C.; Lin, Y.S.; Han, J.L.; Rean, C.T.; Wu, C.Y.; Wong, C.H. Chem. Eur. J. 2010, 16, 1754 –1760.
    36. Wang, L.; Lomino, J. ACS Chem. Biol. 2011, 7, 110-122.
    37. Yang, Y.; Barendregt, A.; Kamerling, J.; Heck, A. Anal. Chem. 2013, 85, 12037-12045.
    38. An, H.; Froehlich, J.; Lebrilla, C. Curr.Opin.Chem.Biol, 2009, 13, 421-426.
    39. Hase, S.; Ikenaka, T.; Matsushima, Y. Biochem. Biophy. Res. Comm, 1978, 85, 257-263.
    40. Zhou, S.; Veillon, L.; Dong, X.; Huang, Y.; Mechref, Y. Analyst, 2017, 142, 4446-4455.
    41. Liu, H.; Zhang, N.; Wan, D.; Cui, M.; Liu, Z.; Liu, S. Clin. Proteomics, 2014, 11, 14-14.
    42. Kilpatrick, L.E.; Kilpatrick, E.L. J. Proteome. Res. 2017, 16, 3255-3265.
    43. Zhang, Y.; Zhu, J.; Yin, H.; Marrero, J.; Zhang, X.-X.; Lubman, D. M. J. Proteome. Res. 2015, 14, 5388-5395.
    44. Lu, G.; Crihfield, C. L.; Gattu, S.; Veltri, L. M.; Holland, L. A. Chem. Rev, 2018, 118, 7867-7885.
    45. Szigeti, M.; Guttman, A. Sci. Rep, 2017, 7, 11663.
    46. Pai, P.; Hu, Y.; Lam, H. Anal. Chim. Acta, 2016, 934,152-162.
    47. Costell, C. E.; Contado-Miller, J. M.; Cipollo, J. F. J. Am. Soc. Mass Spectrom. 2007, 18, 1799-1812.
    48. Palmisano, G.; Larsen, M. R.; Packer, N. H.; Thaysen-Andersen, M. RSC Adv. 2013, 3, 22706-22726.
    49. Nishikaze, T. Mass Spectrom, 2017, 6, A0060-A0060.
    50. Zhou, S.; Huang, Y.; Dong, X.; Peng, W.; Veillon, L.; Kitagawa, D. A. S.; Aquino, A. J. A.; Mechref, Y. Anal. Chem. 2017, 89, 6590-6597.
    51. Zhao, J.; Li, S.; Li, C.; Wu, S.-L.; Xu, W.; Chen, Y.; Shameem, M.; Richardson, D.; Li, H.Anal. Chem.2016, 88,7049-7059.
    52. Liang, Q.; Chopra, P.; Boons, G.-J.; Sharp, J. S. Carbohydr. Res. 2018, 465, 16-21.
    53. Echeverria, B.; Serna, S.; Achilli, S.; Vivès, C.; Pham, J.; Thépaut, M.; Hokke, C. H.; Fieschi, F.; Reichardt, N.-C. ACS Chem. Biol. 2018, 13, 2269-2279.
    54. Chen, C.-H.; Lin, Y.-P.; Lin, J.-L.; Li, S.-T.; Ren, C.-T.; Wu, C.-Y.; Chen, C.-H. Israel Journal of Chemistry, 2015, 55, 412-422.
    56. Chen, C.-H.; Lin, Y.-P.; Lin, J.-L.; Li, S.-T.; Ren, C.-T.; Wu, C.-Y.; Chen, C.-H., Rapid Identification of Terminal Sialic Acid Linkage Isomers by Pseudo-MS3Mass Spectrometry. Israel Journal of Chemistry. 2015, 55 (3-4), 412-422; (B) Pett, C.; Nasir, W.; Sihlbom, C.; Olsson, B. M.; Caixeta, V.; Schorlemer, M.; Zahedi, R. P.; Larson, G.; Nilsson, J.; Westerlind, U., Effective Assignment of
    alpha2,3/alpha2,6-Sialic Acid Isomers by LC-MS/MS-Based Glycoproteomics. Angew Chem Int Ed Engl. 2018, 57 (30), 9320-9324.
    57. de Haan, N.; Reiding, K. R.; Haberger, M.; Reusch, D.; Falck, D.; Wuhrer, M., Linkage-specific sialic acid derivatization for MALDI-TOF-MS profiling of IgG glycopeptides. Analytical chemistry. 2015, 87 (16), 8284-91.
    58. Wheeler, S. F.; Domann, P.; Harvey, D. J., Derivatization of sialic acids for stabilization in matrix-assisted laser desorption/ionization mass spectrometry and concomitant differentiation of isomers.Rapid Commun Mass Spectrom. 2009, 23(2), 303-12.
    59. Fineberg, Harvey, V. Pandemic Preparedness and Response — Lessons from the H1N1 Influenza of 2009. N. Engl. J. Med. 2014, 370, 1335-1342.
    60. Smith, G. J. D.; Vijaykrishna, D.; Bahl, J.; Lycett, S. J.; Worobey, M.; Pybus, O. G.; Ma, S. K.; Cheung, C. L.; Raghwani, J.; Bhatt, S.; Peiris, J. S. M.; Guan, Y.; Rambaut, A. Nature. 2009, 459, 1122-1125.
    61. Lee, C.-C. D.; Zhu, H.; Huang, P.-Y.; Peng, L.; Chang, Y.-C.; Yip, C.-H.; Li, Y.-T.; Cheung, C.-L.; Compans, R.; Yang, C.; Smith, D. K.; Lam, T. T.-Y.; King, C.-C.; Guan, Y., Emergence and Evolution of Avian H5N2 Influenza Viruses in Chickens in Taiwan. J. Virol. 2014, 88 (10), 5677-5686.
    62. Ogata, T.; Yamazaki, Y.; Okabe, N.; Human H5N2 avian influenza infection in Japan and the factors associated with high H5N2-neutralizing antibody titer. J Epidemiol. 2008,18,160–166.
    63. Imai, M.; Kawaoka, Y., The role of receptor binding specificity in interspecies transmission of influenza viruses. Curr. Opin. Virol. 2012, 2 (2), 160-167.
    64. (a) Tzarum, N.; de Vries, R. P.; Zhu, X.; Yu, W.; McBride, R.; Paulson, J. C.; Wilson, I. A. Structureand receptor binding of the hemagglutinin from a human H6N1 influenza virus. Cell Host Microbe.
    2015, 17 (3), 369−76. (b) Chandrasekaran, A.; Srinivasan, A.; Raman, R.; Viswanathan, K.;Raguram, S.; Tumpey, T. M.; Sasisekharan, V.; Sasisekharan, R., Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin. Nat.Biotechnol 2008, 26 (1), 107-113. (c) North, S.
    J.; Huang, H.-H.; Sundaram, S.; Jang-Lee, J.; Etienne, a T.; Trollope, A.; Chalabi, S.; Dell, A.; Stanley, P.; Haslam, S. M. J. Biol. Chem. 2010, 285, 5759−5775. (d) Maines, T. R.; Jayaraman, A.; Belser, J. A.; Wadford, D. A.; Pappas, C.; Zeng, H.; Gustin, K. M.; Pearce, M. B.; Viswanathan, K.; Shriver, Z. H.; Raman, R.; Cox, N. J.; Sasisekharan, R.; Katz, J. M.; Tumpey, T. M. Science. 2009,
    325, 484-487.
    65. Byrd-Leotis, L.; Jia, N.; Dutta, S.; Trost, J. F.; Gao, C.; Cummings, S. F.; Braulke, T.; Müller-Loennies, S.; Heimburg-Molinaro, J.; Steinhauer, D. A.; Cummings, R. D., Influenza binds phosphorylated glycans from human lung. Sci Adv. 2019, 5 (2), eaav2554-eaav2554.
    66. Oshansky, C. M.; Pickens, J. A.; Bradley, K. C.; Jones, L. P; Saavedra-Ebner, G. M.; Barber, J. P.; Crabtree, J. M.; Steinhauer, D. A.; Tompkins, S. M.; Tripp, R. A. PLoS One. 2011, 6, e21183.

    QR CODE