簡易檢索 / 詳目顯示

研究生: 盧孟萱
Lu, Meng-Hsuan
論文名稱: 利用原位腦腫瘤模型探討神經纖毛蛋白-1於腦癌細胞與F4/80+巨噬細胞的雙重調控
The dual regulation of Nrp1 on tumors and F4/80+ macrophages in astrocytoma model
指導教授: 江啟勳
Chiang, Chi-Shiung
口試委員: 陳芳馨
Chen, Fang-Hsin
張建文
Chang, Chien-Wen
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 61
中文關鍵詞: 神經膠質瘤神經纖毛蛋白-1腫瘤相關巨噬細胞
外文關鍵詞: astrocytoma, Nrp-1, tumor-associated macrophage
相關次數: 點閱:86下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 神經膠質瘤被視為一種極具侵略性的惡性腫瘤。即便目前先進的醫療技術,經過治療後的患者仍呈現極差的預後情形,且容易產生腫瘤復發的狀況。此現象除了腫瘤本身的惡性程度,腫瘤相關免疫細胞與腫瘤間的交互作用也扮演了非常重要的角色,因為這些免疫細胞尤其巨噬細胞容易作為提供腫瘤優良生長環境的幫手。神經纖維蛋白-1 (Neuropilin-1,Nrp1) 是一種具多功能性的膜蛋白。其參與了非常多的生理與病理機制。在腫瘤環境中,因為可以被血管內皮細胞、特定免疫細胞與腫瘤細胞表現,它與血管新生及腫瘤免疫息息相關。然而其功能及參與機制過於廣泛複雜,仍未完全研究透徹。此篇研究目的為探討Nrp1對於神經膠質瘤所扮演的角色及了解腦瘤細胞與腫瘤相關巨噬細胞兩者所表現的Nrp1是否有互相調節之關係存在。有研究指出,Nrp1的表現與人類腦腫瘤的惡性程度呈現正相關趨勢,因為Nrp1能幫助增加腫瘤血管新生及侵襲能力。另外表現Nrp1的巨噬細胞也被指出具抑制免疫反應之功能。於此篇論文,我們利用慢病毒轉染shRNA系統抑制腦癌細胞株ALTS1C1的Nrp1表現 (ALTS1C1_Nrp1kd),並使用原位腦腫瘤模型探討Nrp1於腦瘤微環境帶來的影響。Nrp1抑制腫瘤細胞及腫瘤模型生長,且Nrp1表現與血管密度具高度相關性。另外我們發現成熟的F4/80巨噬細胞有高度Nrp1表現,雖然在Nrp1kd腫瘤內的數量沒有太大差異,但較多的M2傾向巨噬細胞分布在缺氧區。當腫瘤細胞與骨髓分化巨噬細胞共培養,巨噬細胞的Nrp1大幅增加但腫瘤的Nrp1則被抑制,有趣的是此現象似乎與腫瘤上的Nrp1沒有關聯。綜上所述,Nrp1可作為具潛力的癌症治療策略目標。


    Astrocytoma is characterized as one of the most invasive malignancies. After current treatment, the patients sill have poor prognosis. Besides the malignant properties of tumors, the interaction between tumors and stromal immune cells played a critical role in contributing to a tumor-favoring complex microenvironment. Neuropilin-1 (Nrp1) is a transmembrane protein involves in many mechanisms such as angiogenesis and immune reaction during tumor progression. It can be expressed on vascular epithelial cells, immune cells, and specific tumor cells. However, due to the diverse involvement in different process, it is still not fully elucidated. One of the purpose of this study is to clarify the regulation of Nrp1 between interaction of brain tumors and tumor-associated macrophages (TAM). Evidence shows that the malignancy of human astrocytoma is positive correlated to its Nrp1 expression, enhancing the angiogenic and invasive ability of tumors. In addition, Nrp1 expressing TAMs are involved in suppression of anti-tumor immunity. In this study, Nrp1 was suppressed by lentiviral transduction of siRNA to reveal the role of Nrp1 in brain tumor microenvironment with the orthotopic brain tumor model ALTS1C1 (ALTS1C1_Nrp1kd). Inhibition of Nrp1 can delay tumor cell growth and orthotopic tumor progression. Also Nrp1 is closely related to angiogenesis in ALTS1C1 tumors. With higher level of Nrp1, higher vascular density is in the tumor region. In immune microenvironment, F4/80+ TAMs are the main contributors of Nrp1, and the expression level is associated with the maturation state. Although the amount of TAMs in tumor site is not affected in ALTS1C1_Nrp1kd tumors, more M2-type CD206+ TAM is distributed in hypoxia. After interaction of ALTS1C1 tumor cells and bone marrow derived macrophages (BMDM), a counter regulation is observed. The Nrp1 on BMDMs is dramatically elevated; on the opposite, the Nrp1 on the tumor cells is suppressed. Interestingly, the regulation seems to be tumor-expressing Nrp1 independent. Altogether, the targeting of Nrp1 could be a possible candidate for cancer therapeutic research.

    中文摘要 1 Abstract 2 致謝 3 Table of contents 4 Chapter I: Introduction 7 1.1 Glioma 7 1.2 Neuropilin-1 (Nrp1) 8 1.3 Tumor-associated macrophages and microglia 9 1.4 Aim 11 Chapter II: Materials and methods 12 2.1 Construction of Nrp1 shRNA carrying plasmid 12 2.1.1 DNA cutting and ligation 12 2.1.2 Agarose gel electrophoresis (0.7%, 2%) 13 2.1.3 Heat-shock transformation 14 2.1.4 Plasmid mini preparation 14 2.1.5 Plasmid midi preparation 15 2.1.6 Polymerase chain reaction (PCR) 15 2.2 Cells 16 2.2.1 Cell lines culture 16 2.2.2 Lentivirus production and infection 17 2.2.3 Total RNA isolation and RT-PCR 18 2.2.4 Immunocytochemistry staining 20 2.2.5 In vitro Cell Growth Curve 20 2.3 Animals 20 2.4 Intracranial tumor implantation 21 2.5 Mice sacrifice and tissue storage 21 2.6 Quantification of tumor area by H&E staining 22 2.7 Immunohistochemistry Staining 22 2.8 Flow Cytometric Analysis of Tumor 23 2.8.1 Tumor homogenization 23 2.8.2 Flow cytometry analysis 24 2.9 Bone marrow derived macrophage and tumor cell co-culture system 24 2.9.1 Bone marrow Cell Extraction and Differentiation 25 2.9.2 Co-culture of BMDMs and tumor cells 25 2.9.3 Flow cytometric analysis 26 2.10 Statistics 26 Chapter III: Results 27 3.1 Comparison of Nrp1 expression in different brain tumor model 27 3.2 Construction of Nrp1 shRNA carrying lentiviral plasmid 28 3.3 Examination of Nrp1 inhibition in lentiviral transfected tumor cell 28 3.3.1 mRNA expression level in the transfected cell line 28 3.3.2 Protein expression level in the transfected cell line 29 3.4 The influence of Nrp1 on ALTS1C1 tumor growth 29 3.4.1 The in vitro growth of Nrp1 shRNA transfected cell line 29 3.4.2 The intracranial tumor growth after Nrp1 inhibition 30 3.5 The effect of Nrp1 in brain tumor microenvironment 30 3.5.1 The effect of Nrp1 on vessels and hypoxia 30 3.5.2 The effect of Nrp1 on infiltrating myeloid cells 31 3.6 Nrp1 regulation between tumor cells and tumor-associated macrophages interaction 33 Chapter IV: Discussion 34 4.1 The correlation of Nrp1 with the malignancy of astrocytoma 34 4.2 The role of Nrp1 in brain tumor progression and angiogenesis 34 4.3 The effect of Nrp1 on brain tumor immune microenvironment 35 4.4 Alteration of Nrp1 between tumor cells and macrophages interaction 36 4.5 The correlation of Nrp1 on TAMs and hypoxia 37 4.6 Summary 38 Chapter V: References 53

    1. Louis, D.N., et al., The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta neuropathologica, 2016. 131(6): p. 803-820.
    2. Ostrom, Q.T., et al., CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008-2012. Neuro- …, 2015.
    3. Oike, T., et al., Radiotherapy plus concomitant adjuvant temozolomide for glioblastoma: Japanese mono-institutional results. PloS one, 2013. 8(11).
    4. Stupp, R., et al., Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. The New England journal of medicine, 2005. 352(10): p. 987-996.
    5. Julka, P.K., et al., Postoperative treatment of glioblastoma multiforme with radiation therapy plus concomitant and adjuvant temozolomide : A mono-institutional experience of 215 patients. Journal of cancer research and therapeutics, 2013. 9(3): p. 381-386.
    6. Park, J.K., et al., Scale to predict survival after surgery for recurrent glioblastoma multiforme. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 2010. 28(24): p. 3838-3843.
    7. Gieryng, A., et al., Immune microenvironment of gliomas. Laboratory investigation; a journal of technical methods and pathology, 2017. 97(5): p. 498-518.
    8. Giese, A., et al., Cost of migration: invasion of malignant gliomas and implications for treatment. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 2003. 21(8): p. 1624-1636.
    9. Wang, S.-C.C., et al., Tumor-secreted SDF-1 promotes glioma invasiveness and TAM tropism toward hypoxia in a murine astrocytoma model. Laboratory investigation; a journal of technical methods and pathology, 2012. 92(1): p. 151-162.
    10. He, Z. and M. Tessier-Lavigne, Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell, 1997. 90(4): p. 739-751.
    11. Staton, C.A., et al., Neuropilins in physiological and pathological angiogenesis. The Journal of Pathology, 2007. 212(3): p. 237-248.
    12. Gu, C., et al., Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development. Developmental cell, 2003.
    13. Hayashi, M., et al., Osteoprotection by semaphorin 3A. Nature, 2012.
    14. Takashima, S., et al., Targeting of both mouse neuropilin-1 and neuropilin-2 genes severely impairs developmental yolk sac and embryonic angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2002. 99(6): p. 3657-3662.
    15. Kolodkin, A.L., et al., Neuropilin is a semaphorin III receptor. Cell, 1997.
    16. Soker, S., et al., VEGF165 mediates formation of complexes containing VEGFR-2 and neuropilin-1 that enhance VEGF165-receptor binding. Journal of Cellular Biochemistry, 2002. 85(2): p. 357-368.
    17. Chen, H., et al., Neuropilin-2, a novel member of the neuropilin family, is a high affinity receptor for the semaphorins Sema E and Sema IV but not Sema III. Neuron, 1997. 19(3): p. 547-559.
    18. Giger, R.J., et al., Neuropilin-2 is a receptor for semaphorin IV: insight into the structural basis of receptor function and specificity. Neuron, 1998. 21(5): p. 1079-1092.
    19. Hong, T.-M.M., et al., Targeting neuropilin 1 as an antitumor strategy in lung cancer. Clinical cancer research : an official journal of the American Association for Cancer Research, 2007. 13(16): p. 4759-4768.
    20. Pan, Q., et al., Blocking neuropilin-1 function has an additive effect with anti-VEGF to inhibit tumor growth. Cancer cell, 2007.
    21. Bergé, M., et al., Small interfering RNAs induce target-independent inhibition of tumor growth and vasculature remodeling in a mouse model of hepatocellular carcinoma. The American journal of pathology, 2010. 177(6): p. 3192-3201.
    22. Parikh, A.A., et al., Neuropilin-1 in human colon cancer: expression, regulation, and role in induction of angiogenesis. The American journal of pathology, 2004. 164(6): p. 2139-2151.
    23. Loser, K., H. von Boehmer, and J. Buer, Frontline: Neuropilin‐1: a surface marker of regulatory T cells. … of immunology, 2004.
    24. Tordjman, R., et al., A neuronal receptor, neuropilin-1, is essential for the initiation of the primary immune response. Nature immunology, 2002. 3(5): p. 477-482.
    25. Catalano, A., et al., Semaphorin-3A is expressed by tumor cells and alters T-cell signal transduction and function. Blood, 2006.
    26. Delgoffe, G.M., et al., Stability and function of regulatory T cells is maintained by a neuropilin-1-semaphorin-4a axis. Nature, 2013.
    27. Kliche, S., J. Albert, and T. Sparwasser, Neuropilin 1 deficiency on CD4+ Foxp3+ regulatory T cells impairs mouse melanoma growth. … Medicine, 2012.
    28. Takamatsu, H., N. Takegahara, and Y. Nakagawa, Semaphorins guide the entry of dendritic cells into the lymphatics by activating myosin II. Nature …, 2010.
    29. Mangani, D., M. Weller, and P. Roth, The network of immunosuppressive pathways in glioblastoma. Biochemical pharmacology, 2017. 130: p. 1-9.
    30. Quail, D.F. and J.A. Joyce, Microenvironmental regulation of tumor progression and metastasis. Nature medicine, 2013. 19(11): p. 1423-1437.
    31. Graeber, M.B., B.W. Scheithauer, and G.W. Kreutzberg, Microglia in brain tumors. Glia, 2002.
    32. Bowman, R.L., et al., Macrophage ontogeny underlies differences in tumor-specific education in brain malignancies. Cell reports, 2016.
    33. Hambardzumyan, D., D.H. Gutmann, and H. Kettenmann, The role of microglia and macrophages in glioma maintenance and progression. Nature neuroscience, 2016. 19(1): p. 20-27.
    34. Perdiguero, E.G., et al., Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature, 2015.
    35. Wynn, T.A., A. Chawla, and J.W. Pollard, Macrophage biology in development, homeostasis and disease. Nature, 2013. 496(7446): p. 445-455.
    36. Pittet, M.J., M. Nahrendorf, and F.K. Swirski, The journey from stem cell to macrophage. Annals of the New York Academy of Sciences, 2014. 1319(1): p. 1-18.
    37. Mantovani, A., et al., The origin and function of tumor-associated macrophages. Immunology today, 1992. 13(7): p. 265-270.
    38. Bonavita, E., et al., PTX3 is an extrinsic oncosuppressor regulating complement-dependent inflammation in cancer. Cell, 2015. 160(4): p. 700-714.
    39. Noy, R. and J.W. Pollard, Tumor-associated macrophages: from mechanisms to therapy. Immunity, 2014. 41(1): p. 49-61.
    40. De Palma, M. and C.E. Lewis, Macrophage regulation of tumor responses to anticancer therapies. Cancer cell, 2013. 23(3): p. 277-286.
    41. Sica, A. and A. Mantovani, Macrophage plasticity and polarization: in vivo veritas. The Journal of clinical investigation, 2012. 122(3): p. 787-795.
    42. Coussens, L.M., L. Zitvogel, and A.K. Palucka, Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science, 2013.
    43. Mantovani, A., et al., Cancer-related inflammation. Nature, 2008. 454(7203): p. 436-444.
    44. Colegio, O.R., et al., Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature, 2014. 513(7519): p. 559-563.
    45. Galdiero, M.R., et al., Tumor associated macrophages and neutrophils in tumor progression. Journal of cellular physiology, 2013. 228(7): p. 1404-1412.
    46. DeNardo, D.G., et al., CD4+ T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer cell, 2009.
    47. Lin, E.Y., A.V. Nguyen, and R.G. Russell, Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. Journal of Experimental …, 2001.
    48. Palma, D.M., et al., Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nature medicine, 2003.
    49. Qian, B.Z. and J.W. Pollard, Macrophage diversity enhances tumor progression and metastasis. Cell, 2010.
    50. Ruffell, B., N.I. Affara, and L.M. Coussens, Differential macrophage programming in the tumor microenvironment. Trends in immunology, 2012.
    51. Squadrito, M.L. and D.M. Palma, Macrophage regulation of tumor angiogenesis: implications for cancer therapy. Molecular aspects of medicine, 2011.
    52. Wyckoff, J., et al., A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer research, 2004.
    53. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-674.
    54. Mazurek, A.M. and M. Olbryt, The influence of neuropilin-1 silencing on semaphorin 3A and 3C activity in B16(F10) murine melanoma cells. Neoplasma, 2012. 59(1): p. 43-51.
    55. Broholm, H. and H. Laursen, Vascular endothelial growth factor (VEGF) receptor neuropilin-1's distribution in astrocytic tumors. APMIS : acta pathologica, microbiologica, et immunologica Scandinavica, 2004. 112(4-5): p. 257-263.
    56. Ding, H., et al., Expression and regulation of neuropilin-1 in human astrocytomas. International journal of cancer, 2000. 88(4): p. 584-592.
    57. Osada, H., et al., Overexpression of the neuropilin 1 (NRP1) gene correlated with poor prognosis in human glioma. Anticancer research, 2004. 24(2B): p. 547-552.
    58. Hu, B., et al., Neuropilin-1 promotes human glioma progression through potentiating the activity of the HGF/SF autocrine pathway. Oncogene, 2007. 26(38): p. 5577-5586.
    59. Abounader, R. and J. Laterra, Scatter factor/hepatocyte growth factor in brain tumor growth and angiogenesis. Neuro-oncology, 2005. 7(4): p. 436-451.
    60. Miao, H.Q., et al., Neuropilin-1 expression by tumor cells promotes tumor angiogenesis and progression. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2000. 14(15): p. 2532-2539.
    61. Bachelder, R.E., et al., Competing autocrine pathways involving alternative neuropilin-1 ligands regulate chemotaxis of carcinoma cells. Cancer research, 2003. 63(17): p. 5230-5233.
    62. Hamerlik, P., et al., Autocrine VEGF-VEGFR2-Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth. The Journal of experimental medicine, 2012. 209(3): p. 507-520.
    63. Klagsbrun, M., S. Takashima, and R. Mamluk, The role of neuropilin in vascular and tumor biology. Advances in experimental medicine and biology, 2002. 515: p. 33-48.
    64. Brandenburg, S., et al., Resident microglia rather than peripheral macrophages promote vascularization in brain tumors and are source of alternative pro-angiogenic factors. Acta neuropathologica, 2016. 131(3): p. 365-378.
    65. Wallerius, M., et al., Guidance Molecule SEMA3A Restricts Tumor Growth by Differentially Regulating the Proliferation of Tumor-Associated Macrophages. Cancer research, 2016. 76(11): p. 3166-3178.
    66. Komohara, Y., et al., Importance of direct macrophage-tumor cell interaction on progression of human glioma. Cancer science, 2012. 103(12): p. 2165-2172.
    67. Miyauchi, J.T., et al., Ablation of Neuropilin 1 from glioma-associated microglia and macrophages slows tumor progression. Oncotarget, 2016. 7(9): p. 9801-9814.
    68. Svensson, J., et al., Macrophages at the fetal-maternal interface express markers of alternative activation and are induced by M-CSF and IL-10. Journal of immunology (Baltimore, Md. : 1950), 2011. 187(7): p. 3671-3682.
    69. Kosuke Kawaguchi, E.S., Mariko Nishie, Isao Kii, Tatsuki R. Kataoka, Masahiro Hirata, Masashi Inoue, Fengling Pu, Keiko Iwaisako, Moe Tsuda, Ayane Yamaguchi, Hironori Haga, Masatoshi Hagiwara, Masakazu Toi, Downregulation of neuropilin-1 on macrophages modulates antibody-mediated tumoricidal activity. Cancer Immunology Immunotherapy, 2017: p. 1-12.
    70. Grandclement, C. and C. Borg, Neuropilins: A New Target for Cancer Therapy. Cancers, 2011. 3(2): p. 1899-1928.
    71. Carrer, A., et al., Neuropilin-1 Identifies a Subset of Bone Marrow Gr1− Monocytes That Can Induce Tumor Vessel Normalization and Inhibit Tumor Growth. Cancer Research, 2012. 72(24): p. 6371-6381.
    72. Lewis, J.S., R.J. Landers, and J.C.E. Underwood, Expression of vascular endothelial growth factor by macrophages is up‐regulated in poorly vascularized areas of breast carcinomas. The Journal of …, 2000.
    73. Grimshaw, M.J. and J.L. Wilson, Endothelin‐2 is a macrophage chemoattractant: implications for macrophage distribution in tumors. European journal of …, 2002.
    74. Laskin, D.L., et al., Activation of alveolar macrophages by native and synthetic collagen-like polypeptides. American journal of respiratory cell and molecular biology, 1994. 10(1): p. 58-64.
    75. Casazza, A., et al., Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity. Cancer Cell, 2013. 24(6): p. 695-709.
    76. Leblond, M.M., et al., Hypoxia induces macrophage polarization and re-education toward an M2 phenotype in U87 and U251 glioblastoma models. Oncoimmunology, 2016. 5(1).
    77. Burke, B., et al., Hypoxia-induced gene expression in human macrophages: implications for ischemic tissues and hypoxia-regulated gene therapy. The American journal of …, 2003.
    78. Doedens, A.L., et al., Macrophage expression of hypoxia-inducible factor-1α suppresses T-cell function and promotes tumor progression. Cancer research, 2010.
    79. Movahedi, K., et al., Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C (high) monocytes. Cancer research, 2010.

    QR CODE