簡易檢索 / 詳目顯示

研究生: 陳昭亨
Chao-Heng Chen
論文名稱: 盤型超音波致動器動態電性分析
The Electrical Measurement and Dynamic Analysis of Disc Type Ultrasonic Actuator
指導教授: 歐陽敏盛
Min-Shen Ouyang
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 84
中文關鍵詞: 假性隨機二進位序列系統鑑別掃頻超音波致動器
外文關鍵詞: PRBS, system identification, ultrasonic actuator
相關次數: 點閱:78下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要針對本實驗室所研發的盤型超音波致動器,提出以系統鑑別(System Identification) 之理論及自行建構的假性隨機二進位序列 (Pseudo Random Binary Sequence;PRBS) 硬體電路產生掃頻訊號實現致動器動態電性鑑別,進而得出致動器之動態等效電路及等效電容,並分析致動器結構改變時之動態及靜態效應,及其所需匹配之串聯電感,經過實際測試之後驗證了本文方法之可行性。
    本實驗利用PRBS硬體電路對致動器進行掃頻,利用儲存式示波器儲存系統輸入及輸出資料,而後將資料送入經由Matlab套裝軟體所撰寫之程中進行分析的工作。本文提供了一個簡單便宜之臨場動態掃頻機制,其有別於昂貴的阻抗分析儀或頻譜分析儀,但卻又不失量測精度與結果;且此實驗方法可以針對馬達、動力機械系統及電路系統等不同的對象掃頻以取得系統動態電性特性,故應用範圍廣泛。


    摘 要 I 誌 謝……………………...………………………………………………….II 目 錄 III 圖 目 錄 V 表 目 錄 VIII 第一章 緒 論…………………………………………………………………...1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機與目的 11 1.4 本文內容 15 第二章 超音波致動器及系統鑑別理論……………………………………...16 2.1超音波致動器理論 16 2.1.1壓電效應….……………………………………………………..16 2.1.2超音波致動器工作原理……….………………………………..18 2.2系統鑑別理論 21 2.2.1鑑別模型….……………………………………………………..21 2.2.2散佈係數理論……………………...………………..…………..26 2.2.3擾動信號源理論………….……………………………………..28 第三章 實驗的架設、方法與步驟……………………………………………32 3.1實驗的架設 32 3.2實驗的方法與步驟 35 第四章 超音波致動器的動態量測與分析與等效電路建構………………...43 4.1傳統量測及分析方法 43 4.2本實驗的方法 47 4.2.1實驗架構…………..….………………………………………..47 4.2.2致動器動態分析…....………………...………………………..49 4.3 致動器等效電路分析….……….……….…………...………………57 第五章 實驗結果……………………………………………………………...61 5.1致動器等效電容及電感匹配…….…………………………………..61 5.2 實際電感驗證……………..…………………………………………66 5.3 不同電感對致動器效率之影響……………………………………..69 第六章 結論…………………………………………………………………...72 6.1 本文貢獻……………………………………………………………..72 6.2 未來研究之方向與建議……………………………………………..73 參考文獻……………………………………………………………………….75 附錄 第四章Matlab程式…………………….…….………………………….78

    [1] Piezoelectric Ceramics, Edited by B. Jaffe, W. R. Cook. Jr. and H. Jaffe. R. A. N. Publishers, OH, 1971.
    [2] W. Wersing, H. Wahl, and M. Schnöller, “PZT-Based Multilayer Piezoelectric Ceramics with AgPd-Internal Electrodes,” Ferroelectries, Vol. 87, pp. 271-94, 1998.
    [3] T. Masaki, K. Kawata and T. Masuazwa, “Micro Electro-Discharge c
    Machining and Its Application,” Proc. IEEE Int. Conference, pp. 21-26,1990.
    [4] B. Jaffe, R. S. Roth, and S. Marzullo, “Piezoelectric Properties of Leadd- Zirconate Lead Titanate Solid Solution Ceramics,” J. Appl. Phys., Vol 25, pp. 809, 1954.
    [5] D. Berlincourt, “Current Development in Piezoelectric Applications of Ferroelectrics,” Ferroelectric, Vol 10, pp. 111, 1976.
    [6] V. Snitka, V. Mizariene, and D, Zukauskas, “The Status of ultrasonic motors in the former Soviet Union," Ultrasonic, Vol 34, pp. 247-250, 1996.
    [7] F. J. Lin and L. C. Kuo, “Driving circuit for ultrasonic motor servo drive with variable-structure adaptive model-following control," IEE Proc. Electr. Power , Vol 144, pp. l99-206, 1997.
    [8] 郭能釧,超音波馬達負載共振式驅動電路設計與分析,私立中原大
    學電機工程研究所碩士論文,1996。
    [9] M. Aoyagi, Y. Tomikawa, “Simplified equivalent circuit of ultrasonic motor and its apphcation to estimation of motor characteristics," Jpn. J. Appl. Phys., Vo1. 34, pp. 2752-2755, 1995.
    [10] O. Y. Zharii, “Modeling of a mode conversion ultrasonic motor in the regime of slip,” IEEE Trans. Ultrason. Ferroelec. Freq. Control, Vol. 40,
    pp. 411-417, 1993.
    [11] N. W. Hagood IV and A. J. Mcfarland, “Modeling of a piezoelectric rotary
    ultrasonic motor,” IEEE Trans. Ultrason. Ferroelec. Freq. Control, Vol. 42, pp. 210-224, 1995.
    [12] H. Hirata and S. Ueha, “Design of a traveling wave type ultrasonic
    motor,” IEEE Trans. Ultrasnoic. Ferroelec. Freq. Control, Vol. 42, pp
    225-231, 1995.
    [13] T. Yamazaki, J. Hu, K. nakamura and S. Ueha, “Trial construction of a
    noncontact ultrasonic motor with an ultrasonically levitated rotor,” JPn. J.
    Appl. Phys., Vol. 35, pp. 3286-3288, 1996.
    [14] J. Hu, T. Yamazaki, K. nakamura and S. Ueha, “Analyses of an ultrasonic
    motor driving fluid directly,” JPn. J. Appl. Phys., Vol. 34, pp. 2702-
    2706, 1995.
    [15] J. Hu, K. Nakamura and S. Ueha, “Optimum operation of an ultrasonic
    motor driving fluid directly ,” JPn. J. Appl. Phys., Vol. 35, pp. 3289-3294, 1996.
    [16] A. M. Flynn, L. S. Tavrow, S. F. Bart, R. A. Brooks, D.J. Ehrlich, K. R. Udayakumer and L. E. Cross, “Piezoelectric micromotors for microobots,” J. Microelectromech. Syst., Vol. 1, pp. 44-51, 1992.
    [17] T. Senjyu, H. Miyazato, S. Yokoda and K. Uezato, “Speed control of ultrasonic using Neural Network,” Proc. 1996 IEEE IECON. 22nd International Conference on Industrial Electronics, Control and Instrumentation. pp. 887-892, 1996.
    [18] T. Senjyu, H. Miyazato, S. Yokoda and K. Uezato, “Position control of ultrasonic motors Neural Network,” Proc. 1996 IEEE IECON. 22nd International Conference on Industrial Electronics, Control, and Instrumentation. pp. 368-373, 1996.
    [19] J. W. Krome and J. Wallaschek, “Influence of the piezoelectric actuator on the vibrations of the stator of a traveling wave motor,” Proc. IEEE Ultrasonic Symposium, Vol. 1, pp. 413-416, 1995.
    [20] 李政漢,側推式超音波馬達性能量測與應用設計,國立清華大學工程與系統研究所碩士論文,2001。
    [21] 陳明泰,以單晶片為控制基礎的新型壓電致動平台研製,國立清華大學工程與系統研究所碩士論文,2000。
    [22] 郭榮芳,側推式超音波馬達設計與測試,國立清華大學工程與系統研
    究所碩士論文,2000。
    [23] 葉俊余,薄片型超音波致動器之設計與模擬,國立清華大學動力機械工程研究所碩士論文,2000。
    [24] L. Ljung., System Identification Toolbox User’s Guide, The Math Works Inc., July 1991.
    [25] 趙清風,控制之系統識別,全華科技圖書,2001。
    [26] L. Ljung., Modeling of dynamic systems, Prentice-Hall Inc, 1994
    [27] M. Quyang, C. M. Liaw, and C. T. Pan, “Model Reduction by Power Decomposition and Frequency Response Maching,” IEE Trans. On Automatic Control, AC-32, pp. 59-62. 1987.
    [28] 賴明宏,含油軸承試驗機的動態量測與分析,國立清華大學工程與系統科學學系碩士論文,2001。
    [29] 歐陽敏盛與賴明宏著,系統鑑別理論與應用,(校稿中) 。[30] R.N. Mutagi., “Pseudo noise sequences for engineers,” Electronics & Communication Engineering Journal, April, pp. 79-87, 1996.
    [31] Keith Godfrey., Perturbation Signals for System Identification, Prentice-Hall Inc, 1993.
    [32] T. Sashida, and T. Kenjo, An Introduction to Ultrasonic Motors, Biddles Ltd, 1993.
    [33] I. D. LANDOU., System identification and control design, Prentice-Hall Inc., 1990.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE