簡易檢索 / 詳目顯示

研究生: 蕭俊賢
Hsiao, Jun Shian
論文名稱: 對稱的五體中心構型
Symmetrical central configurations of the five-body problem
指導教授: 陳國璋
口試委員: 蔡東和
許正雄
莊重
石至文
陳樹杰
學位類別: 博士
Doctor
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2012
畢業學年度: 101
語文別: 英文
論文頁數: 109
中文關鍵詞: 中心構型
外文關鍵詞: central configurations
相關次數: 點閱:65下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中心構形是多體問體中研究中的一個重要主題 。在第一章我們將簡述其歷史及重要性 。在第二章我們介紹四體中心構型及其性質並給出一些最近的研究成果 。接著便進入我所研究的博士論文主題 , 我考慮具有對稱的五體中心構型,並研究其可能的形狀 。在這個部分我給出了凸五體中心構型其邊長上的一些必要條件,以及關於嚴格凸五體中心構型的一種分類 。在第三章我給了一些極為有意義的凸五體中心構型例子。這些例子可以說明一篇著名論文[Williams 1938]中的一些結果是不對的。第二部分我考慮一個關於中心構型的猜想:在平面上有n個構成凸集的質點,那將不可能把第n+1個質點放在邊界上,使得它形成一個中心構型。首先,我們證明在某些對稱的情形之下,此猜想的確是對的 。最後,我們給了一個關於這個猜想的反例,說明有這樣的中心構型存在 。另外 , 關於對稱的凹中心構型,我考慮有4個質點形成凸4體構型而第5個質點位於其內部的狀況,並將它分為兩大類,討論了關於此種中心構型的存在性問體 。在最後一章,我列舉了一些關於中心構型的重要猜想,同時這也是我未來感興趣的方向 。


    Central configurations is an important subject in the n-body problem. The history of their study is summarized and we explain importance of central configurations in chapter 1. In chapter 2 we give an introduction on 4-body problem and important recent progress. Then we study the main topic:
    Symmetrical five-body central configurations in the following chapters and divide our study into three parts based on the shape of central configurations. First, we discuss central configurations which are strictly convex. The main tool here is similar to Williams' approach, but we will point out some errors in Williams' paper and give some counter-examples. At the same time we give some numerical results about Chenciner's problem regarding center of masses of co-circular central configurations. Second, we study strictly concave central configurations where four of the particles are located at the vertices of a trapezoid or kite with the remaining mass in the interior of the quadrilateral. The main tool in this section is `Laura--Andoyer' equations and it is proved that except for classical central configurations, no other central configurations exist if the remaining mass lies on the intersection of the diagonals of the trapezoid or\ kite. At last we consider convex but not strictly convex central configurations. We give some examples and one of them is a degenerate central configuration which disproves a hypothesis proposed by Z. Xia. In the last chapter, we provide a list of some important problems about central configurations.

    1. CENTRAL CONFIGURATIONS 1.1 Introduction . . . . . . . . . . . .1 1.2 Why are central configurations important? . . . . 4 1.2.1 Central configurations . . . . . . . . . 4 1.2.2 Homographic solution of the planar n-body problem. . 7 1.2.3 Limit configurations near collisions . . . 7 1.2.4 Bifurcation points of integral manifolds . . . 8 2. SOME CLASSICAL RESULTS AND DZIOBEK CONFIGURATION 2.1 Three-body central configurations . . . . . . 10 2.1.1 Moulton's collinear solution . .. . . . 11 2.2 Dziobek configurations . . . . . . . . 12 2.2.1 View points from Dziobek and Schmidt . . . .. 12 2.2.2 Formulation by Albouy . .. . . . . 14 2.3 Symmetry of central configurations . . . . . 15 2.3.1 Mass symmetry implies configuration symmetry: Planar four-body . . .16 2.3.2 New approach by Albouy, Fu and Sun . . 18 2.3.3 Symmetry of configurations imply symmetry of mass. 22 2.4 Five-body central configurations . . . . . . . 23 2.4.1 Results of planar five-body problem . . . . 27 2.4.2 Some remarks on Williams' paper. . . 30 3. STRICTLY CONVEX PENTAGON 3.1 Edge lengths condition . . . . . . . . . . 37 3.1.1 Tools to classify convex pentagon. . 40 3.1.2 Classification about length of convex pentagon. . 46 3.2 Symmetrical pentagons . . . . . . . . . . 51 3.3 Co-circular central configurations .. . . . . . . 53 3.4 Angle . . . . . . . . . . . . . . . . . . 60 3.5 Alain Chenciner ‘s problem for n = 5 in symmetrical case . .61 4. STRICTLY CONCAVE PENTAGON 65 4.1 Rhombus . . . . . . . . . . . . . . . . . . 65 4.1.1 Symmetry in another case (q5 not in the middle point of q1 and q3 ) . . 71 4.2 Symmetrical trapezoid of central configurations . 77 5. CONVEX BUT NOT STRICTLY CONVEX PENTAGON 86 5.1 Planar central configurations with five bodies . 88 5.2 Spatial central configurations with seven bodies . . 92 6. OPEN PROBLEMS 98

    Albouy, A.: Symmetrie des configurations centrales de quatre corps. C.R.Acad.Sci.Paris. 320, 217--220 (1995)
    Albouy, A.: The symmetrical central configurations of four equal masses. Contemp. Math. 198, 131--135 (1996)
    Albouy, A.: On a paper of Moeckel on central configurations. Reg. Chaotic Dynamics 8, 133--142 (2003)
    Albouy, A.: Mutual distances in celestial mechanics, Nelin. Dinam. 361--386 (2006)
    Albouy, A., Chenciner, A.: Le probleme des n corps et les distances mutuells. Invent. Math. 131, 151--184 (1998)
    Albouy, A., Fu, Y., Sun, S.: Symmetry of planar four-body convex central configurations. Proc. R. Soc. Lond. (2008)
    Albouy, A., Cabral, H. E., Santos, A.A. : Some problems on the classical n-body problem. Celest. Mech. Dyn. Astron. 113, 369-375 (2012)
    Andoyer, H.: Sur l'equilibre relatif de n corps. Bull. Astron. 23, 50--59 (1906)
    Albouy, A., Kaloshin, V.: Finiteness of central configurations for five bodies in the plane. Ann. Math. 176, 535--588 (2012)
    Birkhoff, G.D.: Dynamical Systems, volume IX, p. 290. Am. Math. Soc. Colloquium Pub. (1927)
    Buck, G.: On clustering in central configurations, Proc. Amer. Math. Soc. 108, 801-810 (1990)
    Chazy, J.: Sur certaines trajectoires du probleme des n corps. Bull. Astron. 35, 321--389 (1918)
    Chen, Kuo-Chang; Hsiao, Jun-Shian : Convex central configurations of the n-body problem which are not strictly convex. J. Dyn. Differ. E. 24(1), 119--128 (2012)
    Chen, Kuo-Chang; Hsiao, Jun-Shian : A classification theorem for strictly convex central configurations of the planar five-body problem. Preprint.
    Cors, J. M., Roberts, G. E. : Four-body co-circular central configurations Nonlinearity 25, 343--370 (2012).
    Chen, K.C.: Variational constructions for some satellite orbits in periodic gravitational force fields. Amer. J. Math. 132, 681--709. (2010)
    Dziobek, O.: Uber einen merkwurdigen Fall des Vielkorperproblems. Astron. Nachr.152, 33--46 (1900)
    Euler, L.: De motu rectilineo trium corporum se mutuo attrahentium. Novi Comm. Acad. Sci. Imp. Petrop. 11, 144--151 (1767)
    Faycal, N.: On the classification of pyramidal central configurations, Proc. Amer. Math. Soc. 124, 249-258 (1996)
    Hall, G.R.: Central configurations in the planar 1 + n body problem. Preprint, Boston University, Boston (1987)
    Gidea, M., Llibre, J. : symmetrical planar central configurations of five bodies: Euler plus two. Celest Mech Dyn Astr. 106, 89--107 (2010)
    Hampton, M.: Concave Central Configurations in the Four Body Problem. Thesis, University of Washington 2002
    Hampton, M.: Stacked central configurations: new examples in the five-body problem. Nonlinearity 18, 2299--2304 (2005).
    Hampton, M.: Co-circular central configurations in the four-body problem. In: Equadiff 2003 International Conference on Differential Equations, pp. 993--998. World Sci. Publ. Co. Pte. Ltd. (2005)
    Hampton, M., Jensen, A.: Finiteness of spatial central configurations in the five-body problem. Celest. Mech. Dyn. Astron. 109, 321--332 (2011)
    Hampton, M., Moeckel, R.: Finiteness of relative equilibria of the four-body problem. Invent. Math. 163, 289--312 (2006)
    Hampton, M., Santoprete, M.: Seven-body central configurations: A family of central configurations in the spatial seven-body problem. Cel. Mech. Dyn. Astr. 99, 293--305 (2007).
    Shi, J., Xie, Z.: Classification of four-body central configurations with three equal masses. J. Math. Anal. Appl. 363, 512--524 (2010)
    Sperling, H. J.: On the real singularities of the N-body problem. J. Reine Angew. Math. 245, 15--40 (1970)
    Kotsireas, I., Lazard, D.: Central configurations of the 5-body problem with equal masses in three-dimensional space. J. Math. Sci. 108, 1119--1138 (2002)
    Lagrange, J.L.: Essai sur le probleme des trois corps. OEuvres, vol. 6 (1772)
    Llibre, J.: On the number of central configurations in the N-body problem. Celest. Mech. Dyn. Astron. 50, 89--96 (1991)
    Llibre, J., Mello, L.F.: New central configurations for the planar 5-body problem. Cel. Mech. Dyn.Astr. 100, 141--149 (2008)
    Llibre, J., Mello, L.F. and Perez-Chavela, E.:Newstacked central configurations for the planar 5-body problem, preprint (2009)
    Lee, T.L., Santoprete, M.: Central configurations of the five-body problem with equal masses. Celest. Mech. Dyn. Astron. 104, 369--381 (2009)
    Long, Y., Sun, S.: Four-body central configurations with some equal masses. Arch. Rational Mech. Anal 162, 24--44 (2002)
    Maxwell, J.C.: in Maxwell on Saturn's rings, MIT press, Cambridge, MA.(1983)
    Meyer, Kenneth R.; Schmidt, Dieter S., Bifurcations of relative equilibria in the 4- and 5-body problem. Ergodic Theory Dynam. Systems 8 (1988), Charles Conley Memorial Issue, 215--225
    MacMillan, W., Bartky, W.: Permanent central configurations in the problem of four bodies. Trans. Amer.Math. Soc. 34, 838--875 (1932).
    McCord, C.K.: Planar central configuration estimates in the n-body problem. Ergodic Theory Dyn. Syst. 16, 1059--1070 (1996)
    Mello, L. F., Chaves, F. E., Fernandes, A. C., Garcia, B. A. : Stacked central configurations for the spatial six-body problem. Journal of Geometry and Physics 59, 1216 1226 (2009)
    Merkel, J. C.: Morse theory and central configurations in the spatial N-body problem. J. Dyn. Differ. E. 20(3), 653-668 (2008)
    Moeckel, R.: Lecture notes by Richard Moeckel.e: Celetial mechanics especially central configurations.
    Moeckel, R.: Some relative equilibria of N equal masses, preprint (1989)
    Moeckel, Richard, On central configurations, Math. Zeit., 205, 499--517. (1990).
    Moeckel, R.:Linear stability of relative equilibriawith a dominantmass. J. Dyn. Differ. Equ. 6(1), 37--51 (1994)
    Moeckel, R.: Generic Finiteness for Dziobek Configurations. Trans. Am. Math. Soc. 353, 4673--4686 (2001)
    Moeckel, R.: A proof of Saari's conjecture for the three-body problem in Rd . Disc. Cont. Dyn. Sys. Ser.S 1(4), 631--646 (2008)
    Moulton, F.R.: The straight line solutions of the problem of n-bodies. Ann. Math. 12, 1--17 (1910)
    Newton, I.: Philosophi naturalis principia mathematica, Royal Society, London (1687)
    Pacella, F.: Central configurations and the equivariant Morse theory, Arch. Ration. Mech. Anal. 97, 59-74 (1987)
    Painleve, P.: Lecons sur la theorie analytique des equations differentielles, A. Hermann, Paris (1987).
    Perez-Chavela, E., Santoprete, M.: Convex four-body central configurations with some equal masses. Arch.Ration. Mech. Anal. 185, 481--494 (2007)
    Palmore, J. I.: Classifying relative equilibria. I, Bull. Amer. Math. Soc., 79, 904-908, (1973).
    Palmore, J. I.: Classifying relative equilibria. II, Bull. Amer. Math. Soc., 81, 489-491, (1975).
    Perko, L. M., and Walter, E. L.: Regular polygon solutions of the n-body problem, Proc. Amer. Math. Soc. 94, 301-309 (1985).
    Poincare, H.: Les Methodes Nouvelles de la Mechanique Celeste I, Gauthier-Villars, Paris (1892).
    Poincare, H.: Ouvres, Tome VI, Gauthier-Villars, Paris (1901)
    Roberts, G.: A continuum of relative equilibria in the 5-body problem. Physica D 127, 141--145 (1999)
    Saari, D.G.: Expanding Gravitational Systems, Notices Amer. Math. Soc. 156, 219-240 (1971)
    Saari, D.G.: On the role and properties of n-body central configurations. Celest. Mech. 21, 9--20 (1980)
    Saari D G : Collisions, Rings and Other Newtonian N-Body Problems (CBMS Regional Conference Series in Mathematics no 104) (Providence, RI: American Mathematical Society) (2005).
    Santos, A.A.: Dziobeks configurations in restricted problems and bifurcation. Cel. Mech. Dyn. Astr. 90, 213--238 (2004)
    Schmidt, D.S.: Central configurations in R2 and R3, Contemporary Math. 81, 59--76, (1988).
    Smale, S.: Topology and mechanics II. Inv. Math 11, 45--64 (1970)
    Smale, S.: Mathematical problems for the next century. Math. Intell. 20, 7--15 (1998)
    Williams, W.L.: Permanent configurations in the problem of five bodies. Trans. Am. Math. Soc. 44, 563--579 (1938)
    Williams, W.L.: A Pentagon theorem. Am. Math. Mon. 60, 616--617 (1953)
    Wintner, A. : The Analytical Foundations of Celestial Mechanics PrincetonMath. Vol. 5, Princeton University Press, Princeton, NJ (1941).
    Xia, Z.: Convex central configurations for the n-body problem. J. Diff. Eqns. 200, 185--190 (2004).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE