研究生: |
楊煜民 Yu-Min Yang |
---|---|
論文名稱: |
以注射式磁性複合材料結構導引磁性載具定位之研究 Magnetic shaping of ferrite-PDMS composite and its application in magnetic particle targeting |
指導教授: |
蘇育全
Yu-Chuan Su |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | magnetic targeting |
相關次數: | 點閱:60 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要是利用磁場與注射方式將磁性複合材料成型,利用此材料導引磁性粒子定位。將Mn - Zn鐵氧體粉末以固定體積濃度均勻分散在 PDMS 中形成磁性複合材料,在注射過程中利用控制磁場大小來影響表面能與磁能交互作用,產生均勻且細長的磁柱,控制磁場方向來導引此磁柱,形成包覆固定於管狀物上之環形結構,此結構可利用交流磁場加熱提高固化速度,並在適當磁場方向施加下,在此環形結構上下緣的局部區域,感應出較高磁場梯度,利用此磁場梯度可提高受磁化之磁性粒子在特定區域定位的效果,並在磁性粒子導引定位後,適時的移除或繼續施加外加磁場,可控制磁性粒子的釋放或再次聚集,此特性將有助於將具有包覆藥物的磁性粒子導引至欲治療的部位,提升藥物治療的效果。
This work presents a structure forming scheme that is capable of remotely shaping magnetic composites into desired geometries. The magnetic composites, which are made up of fine ferrite particles in PDMS pre-polymer matrices, are injected into controlled magnetic fields and deformed by the induced magnetic and interfacial forces. Directed by the magnetic fields, the injected composites can be longitudinally extruded, wound around targeted structures and attached firmly to them. Once magnetically heated and solidified, the composite structures can potentially serve as implants to assist the targeting of magnetic particles. When energized by external magnetic fields, the implanted structures in turn produce short-ranged forces that can guide the targeting of nearby magnetic particles. As such, the desired internal attraction for magnetic carrier targeting can be achieved and switched on/off remotely, which localizes the retention of carriers, accelerates the release of drugs, and improves the therapeutic efficiency.
參考文獻
[1] Martin A. M. Gijs, “Magnetic bead handling on-chip: new opportunities for analytical application”. Microfluid Nanofluid, 1:22-40 (2004)
[2] Alexiou Ch., Schmidt A., Klein R., Hulin P., Bergemann Ch., Arnold W., “Magnetic drug targeting: biodistribution and dependency on magnetic field strength”. Journal of Magnetism and Magnetic Materials, 252, 363-366 (2002)
[3] Andreas S. Lubbe, M.D., Ph.D., Christoph Alwxiou, Christian Bergemann, “Clinical application of magnetic drug targeting”. Journal of Surgical Research, 95, 200-206 (2001)
[4] Hafeli U.O., “Magnetically modulated therapeutic systems”. International Journal of Pharamaceutics 277, 19-24 (2004)
[5] Jon Dobson, “Magnetic nanoparticles for drug delivery”. Drug Development Research, 67, 55-60 (2006)
[6] Rosengart Axel J., Kaminski Michael D., Haitao Chen, Patricia L. Caviness, Ebner Armin D., Ritter James A., “Magnetizable implants and functionalized magnetic carriers:A novel approach for noninvasive yet targeted drug delivey”. Journal of Magnetism and Magnetic Materials, 293, 633-638 (2005)
[7] Stefan Schultz, Gerhard Wagner, Urban Kia, Jochim Ulrich, “High-pressure homogenization as a process for emulsion formation”. Chem. Eng. Technol, 24, 361-368 (2004)
[8] Rainer H. Muller, Karster Mader, Sven Gohla, “Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art”. European Journal of Pharmaceutics and Biopharmaceutics, 50, 161-177 (2007)
[9] Claudia Bocca, Otto Caputo, Roberta Cavalli, Ludovica Gabriel, Antonella Miglietta, Maria Rosa Gasco, “Phagocytic uptake of fluorescent stealth and non-stealth solidlipid nanoparticles”. International Journal of Pharmaceutics, 175, 185-193 (1998)
[10] Torsten M. Goppert, Rainer H. Muller, “Protein adsorption patterns on poloxamer- and poloxamine- stabilized solid lipid nanoparticles (SLN) ”. European Journal of Pharmaceutics and Biopharmaceutics, 60, 361-372 (2005)
[11] Skjeltorp A.T., “One- and two- dimensional crystallization magnetic holes ”. Physical Review Letters, 51, 25 (1983)
[12] Iacob Gh., Ciochina Al. D., Bredetean O. , “High gradient magnetic separation ordered matrices ”. European Cells and Materials, 3, 167-169 (2002)
[13] Zachary G. Forbes, Benjanmin B. Yellen, Kenneth A. Barbee, and Gary Friedman, “An approach to targeted drug delivery based on uniform magnetic fields”. IEEE Transactions on Magnetics, 39, 5 (2003)
[14] Benjanmin B. Yellen, Zachary G. Forbes, Derek S. Halverson, Gregory Fridman, Kenneth A. Barbee, Michael Chorny, Robert Leny, Gary Friedman, “Targeted drug delivery to magnetic implants for therapeutic applications”. Journal of Magnetism and Magnetic Material, 293, 647-654 (2005)
[15] Iacob Gh., Rotariu O., Strachan N.J.C., Hafeli U. O., “Mangetizable needles and wires- modeling an efficient way to target magnetic micropheres in vivo”. Biorheology, 41, 599-612 (2004)
[16] Aviles Misael O., Haitao Chen, Ebner Armin D., Rosengart Axel J., Kaminski Michael D., Ritter Jam A., “In vitro study of ferromagnetic stents for implant assisted- magnetic drug targeting”. Journal of Magnetism and Magnetic Materials, 311, 306-311 (2007)
[17] Torsten M. Goppert, Rainer H. Muller, “Protein adsorption patterns on poloxamer- and poloxamine-stabilized solid lipid nanoparticles (SLN) ”. European Journal of Pharmaceutics and Biopharmaceutics, 60, 361-372 (2005)
[18] Ming Huang Hsu, Yu Chuan Su, “Iron-oxide embedded solid lipid nanoparticles for magnetically controlled heating and drug delivery”. Biomedical Microdevices (2008)
[19] Martin A. M. Gijs, “Magnetic bead handling on-chip:new opportunities for analytical applications”. Microfluid Nanofluid, 1, 22-40 (2004)
[20] Shinkai M., Yanase M., Honda H., Wakabayashi T., Yoshida J., Kobayashi, “Intracellular hyperthermia for cancer using magnetite cationic liposomes:In vitro study”. Japanese Journal of Cancer Reach, 87, 1179-1183 (1996)
[21] Mornet S., Vasseur S., Grasset F., Duguet E., “Magnetic nanoparticle design for medical diagnosis and therapy”. Journal of Materials Chemistry, 24, 2161-2175 (2004)
[22] Cornell R.M., Schwertmann U., “The iron oxides :structure, properties, reactions, occurrences, and uses”. Wiley-VCH (2003)
[23] 黃忠良, “磁性複合材料理論應用”. 復漢出版社 (2001)