研究生: |
謝承展 Hsieh, Chen-chan |
---|---|
論文名稱: |
開發紅血球細胞膜衍伸相變液滴作為可遙控觸發藥物載體及超音波對比劑 Development of Red Blood Cell Membrane-derived Droplets as Remotely Triggerable Drug Carrier and Ultrasound Contrast Agent |
指導教授: |
張建文
Chang, Chien-Wen |
口試委員: |
詹鴻霖
Chan, Hong-lin 葉秩光 Yeh, Chih-Kuang 張建文 Chang, Chien-Wen |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 83 |
中文關鍵詞: | 紅血球 、載體 、超音波 、遙控觸發 、對比劑 |
外文關鍵詞: | red blood cell, carrier, ultrasound, remotely-triggerable, contrast agent |
相關次數: | 點閱:141 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
紅血球膜衍伸藥物載體被視為新一代的藥物傳遞平台,因其帶有自我識別分子可避免免疫系統辨識攻擊,以及其他紅血球具有之生理穩定度優勢。而遙控觸發藥物傳遞系統為一深具應用潛力的藥物載體設計,因其能遠端控制藥物釋放的時間、劑量或位置而達到更佳治療效果。本研究結合此兩系統的優勢,成功由紅血球細胞膜製作出多功能、可藉超音波觸發藥物釋放的藥物載體-紅血球細胞膜衍伸相變液滴並探討其醫學診斷與治療之應用。
我們提出假設預期紅血球細胞膜衍伸相變液滴之低沸點液體核心可經由高強度聚焦式超音波照射觸發汽化而促使藥物釋放。並且產生之微氣泡可作為超音波對比劑以增強超音波顯影。
實驗製作出之紅血球細胞膜衍伸相變液滴呈現均一大小,直徑約為1.7 μm,具良好分散性及膜蛋白保留情形,抗癌藥物喜樹鹼 (Camptothecin, CPT) 裝載量約2-3%。在超音波照射觸發下,可促使40%的藥物釋放並造成70%癌細胞死亡。超音波觸發汽化產生的氣泡可顯著提高超音波回聲訊號30分貝,並可藉由爆破力量物理性傷害鄰近癌細胞造成60%的癌細胞死亡。活體測試中同樣能藉由超音波觸發體內紅血球細胞膜衍伸相變液滴之汽化,並增強超音波顯影及造成目標區域出血等物理性損傷。
總結實驗結果顯示我們成功建立一新式多功能可遙控觸發釋放的紅血球膜衍伸藥物載體,並可作為超音波對比劑,對於臨床應用具有相當大的潛力。
Red blood cell (RBC)–derived drug carriers are considered as new generation drug delivery platforms because of its advantages of self-recognition for avoiding immune responses. And remotely triggerable drug delivery systems are advantageous on their ability to control the timing, duration, dosage or location of drug delivery. To combine advantages of these two great delivery systems, a new multi-functional, acoustically-activated drug release droplets made of naturally derived red blood cell membrane (RBCM) were fabricated and tested for the potential theranostic applications in this study. We hypothesized that the RBCM droplets (RBCMDs) with great biocompatibility can be vaporized by insonation using high intensity focused ultrasound (HIFU) and results in sudden droplet-bubble transition for on-demand drug release. Additionally, the generated microbubbles could serve as contrast agent to enhance ultrasound imaging. The as-synthesized RBCMDs exhibited uniform size (1.7 μm in diameter), good dispersity and well preservation of RBC membrane-associated proteins that protect the droplets from macrophage uptake. Camptothecin (CPT), an anti-cancer drug, was successfully loaded in the RBCMD with loading efficiency (L.E.) of 2-3% and encapsulation efficiency (E.E.) of 62-97%. Upon short period (3 min) of HIFU irradiation, up to 40% of the encapsulated CPT can be released from the RBCMDs and caused high cell death rate (up to 69%). Besides, the acoustically vaporized RBCMDs significantly increased ultrasound echo signal to 30 dB, and the HIFU-induced physical droplet explosion was capable of damaging nearby cancer cells and resulted in significant cell death (up to 62%). In vivo examinations also show that RBCMDs can be acoustically vaporized in target region, cause blood vessel damage and enhance ultrasound imaging. To summarize, we have developed a new class of naturally derived RBCMDs with great potential on remotely triggerable drug delivery and ultrasound imaging enhancement.
1. Edwards-Moulds, J. and L.L. Woods, Blood groups : P, I, Sda, and Pr. 1991, Arlington, Va.: American Association of Blood Banks. ix, 151 p.
2. Muzykantov, V.R., Drug delivery by red blood cells: vascular carriers designed by mother nature. Expert Opinion on Drug Delivery, 2010. 7(4): p. 403-427.
3. Woodle, M.C., et al., Sterically Stabilized Liposomes - Reduction in Electrophoretic Mobility but Not Electrostatic Surface-Potential. Biophysical Journal, 1992. 61(4): p. 902-910.
4. Winkelmann, J.C. and B.G. Forget, Erythroid and Nonerythroid Spectrins. Blood, 1993. 81(12): p. 3173-3185.
5. Mohandas, N. and P.G. Gallagher, Red cell membrane: past, present, and future. Blood, 2008. 112(10): p. 3939-3948.
6. Fearon, D.T., Regulation of the amplification C3 convertase of human complement by an inhibitory protein isolated from human erythrocyte membrane. Proc Natl Acad Sci U S A, 1979. 76(11): p. 5867-71.
7. Iida, K. and V. Nussenzweig, Complement receptor is an inhibitor of the complement cascade. J Exp Med, 1981. 153(5): p. 1138-50.
8. Nicholsonweller, A., et al., Isolation of a Human-Erythrocyte Membrane Glycoprotein with Decay-Accelerating Activity for C-3 Convertases of the Complement-System. Journal of Immunology, 1982. 129(1): p. 184-189.
9. Schonermark, S., et al., Homologous species restriction in lysis of human erythrocytes: a membrane-derived protein with C8-binding capacity functions as an inhibitor. J Immunol, 1986. 136(5): p. 1772-6.
10. Sugita, Y., Y. Nakano, and M. Tomita, Isolation from human erythrocytes of a new membrane protein which inhibits the formation of complement transmembrane channels. J Biochem, 1988. 104(4): p. 633-7.
11. Davies, A., et al., CD59, an LY-6-like protein expressed in human lymphoid cells, regulates the action of the complement membrane attack complex on homologous cells. J Exp Med, 1989. 170(3): p. 637-54.
12. Holguin, M.H., et al., Isolation and characterization of a membrane protein from normal human erythrocytes that inhibits reactive lysis of the erythrocytes of paroxysmal nocturnal hemoglobinuria. J Clin Invest, 1989. 84(1): p. 7-17.
13. Okada, N., et al., A novel membrane glycoprotein capable of inhibiting membrane attack by homologous complement. Int Immunol, 1989. 1(2): p. 205-8.
14. Oldenborg, P.A., et al., Role of CD47 as a marker of self on red blood cells. Science, 2000. 288(5473): p. 2051-4.
15. Oldenborg, P.A., H.D. Gresham, and F.P. Lindberg, CD47-signal regulatory protein alpha (SIRPalpha) regulates Fcgamma and complement receptor-mediated phagocytosis. J Exp Med, 2001. 193(7): p. 855-62.
16. Ricklin, D. and J.D. Lambris, Complement-targeted therapeutics. Nature Biotechnology, 2007. 25(11): p. 1265-1275.
17. Hu, C.M.J., et al., Polymeric nanotherapeutics: clinical development and advances in stealth functionalization strategies. Nanoscale, 2014. 6(1): p. 65-75.
18. Hu, C.M.J., R.H. Fang, and L.F. Zhang, Erythrocyte-Inspired Delivery Systems. Advanced Healthcare Materials, 2012. 1(5): p. 537-547.
19. Ihler, G.M., R.H. Glew, and F.W. Schnure, Enzyme loading of erythrocytes. Proc Natl Acad Sci U S A, 1973. 70(9): p. 2663-6.
20. Pierige, F., et al., Cell-based drug delivery. Adv Drug Deliv Rev, 2008. 60(2): p. 286-95.
21. Nicolau, C. and K. Gersonde, Incorporation of inositol hexaphosphate into intact red blood cells. I. Fusion of effector-containing lipid vesicles with erythrocytes. Naturwissenschaften, 1979. 66(11): p. 563-6.
22. Matovcik, L.M., I.G. Junga, and S.L. Schrier, Drug-induced endocytosis of neonatal erythrocytes. Blood, 1985. 65(5): p. 1056-63.
23. Murciano, J.C., et al., Prophylactic fibrinolysis through selective dissolution of nascent clots by tPA-carrying erythrocytes. Nat Biotechnol, 2003. 21(8): p. 891-6.
24. Muzykantov, V.R. and R.P. Taylor, Attachment of biotinylated antibody to red blood cells: antigen-binding capacity of immunoerythrocytes and their susceptibility to lysis by complement. Anal Biochem, 1994. 223(1): p. 142-8.
25. Chambers, E. and S. Mitragotri, Prolonged circulation of large polymeric nanoparticles by non-covalent adsorption on erythrocytes. J Control Release, 2004. 100(1): p. 111-9.
26. Chambers, E. and S. Mitragotri, Long circulating nanoparticles via adhesion on red blood cells: mechanism and extended circulation. Exp Biol Med (Maywood), 2007. 232(7): p. 958-66.
27. Chambers, E. and S. Mitragotri, Prolonged circulation of large polymeric nanoparticles by non-covalent adsorption on erythrocytes. Journal of Controlled Release, 2004. 100(1): p. 111-119.
28. Simone, E.A., T.D. Dziubla, and V.R. Muzykantov, Polymeric carriers: role of geometry in drug delivery. Expert Opin Drug Deliv, 2008. 5(12): p. 1283-300.
29. Kim, T.H., et al., Filamentous, mixed micelles of triblock copolymers enhance tumor localization of indocyanine green in a murine xenograft model. Mol Pharm, 2012. 9(1): p. 135-43.
30. Merkel, T.J., et al., Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proceedings of the National Academy of Sciences of the United States of America, 2011. 108(2): p. 586-591.
31. Doshi, N., et al., Red blood cell-mimicking synthetic biomaterial particles. Proceedings of the National Academy of Sciences of the United States of America, 2009. 106(51): p. 21495-21499.
32. Hsu, Y.C., et al., Reduced phagocytosis of colloidal carriers using soluble CD47. Pharm Res, 2003. 20(10): p. 1539-42.
33. Tsai, R.K. and D.E. Discher, Inhibition of "self" engulfment through deactivation of myosin-II at the phagocytic synapse between human cells. J Cell Biol, 2008. 180(5): p. 989-1003.
34. Tsai, R.K., P.L. Rodriguez, and D.E. Discher, Self inhibition of phagocytosis: the affinity of 'marker of self' CD47 for SIRPalpha dictates potency of inhibition but only at low expression levels. Blood Cells Mol Dis, 2010. 45(1): p. 67-74.
35. Lejeune, A., et al., Nanoerythrosome, a new derivative of erythrocyte ghost: preparation and antineoplastic potential as drug carrier for daunorubicin. Anticancer Res, 1994. 14(3A): p. 915-9.
36. Moorjani, M., et al., Nanoerythrosomes, a new derivative of erythrocyte ghost II: identification of the mechanism of action. Anticancer Res, 1996. 16(5A): p. 2831-6.
37. Desilets, J., et al., Nanoerythrosomes, a new derivative of erythrocyte ghost: IV. Fate of reinjected nanoerythrosomes. Anticancer Res, 2001. 21(3B): p. 1741-7.
38. Hu, C.M.J., et al., Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proceedings of the National Academy of Sciences of the United States of America, 2011. 108(27): p. 10980-10985.
39. Gao, W.W., et al., Surface Functionalization of Gold Nanoparticles with Red Blood Cell Membranes. Advanced Materials, 2013. 25(26): p. 3549-3553.
40. Timko, B.P., T. Dvir, and D.S. Kohane, Remotely Triggerable Drug Delivery Systems. Advanced Materials, 2010. 22(44): p. 4925-4943.
41. Simpson, C.R., et al., Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique. Physics in Medicine and Biology, 1998. 43(9): p. 2465-2478.
42. Wijaya, A., et al., Selective Release of Multiple DNA Oligonucleotides from Gold Nanorods. Acs Nano, 2009. 3(1): p. 80-86.
43. Lee, S.E., et al., Remote Optical Switch for Localized and Selective Control of Gene Interference. Nano Letters, 2009. 9(2): p. 562-570.
44. Barhoumi, A., et al., Light-induced release of DNA from plasmon-resonant nanoparticles: Towards light-controlled gene therapy. Chemical Physics Letters, 2009. 482(4-6): p. 171-179.
45. Braun, G.B., et al., Laser-Activated Gene Silencing via Gold Nanoshell-siRNA Conjugates. Acs Nano, 2009. 3(7): p. 2007-2015.
46. Yavuz, M.S., et al., Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nature Materials, 2009. 8(12): p. 935-939.
47. Sershen, S.R., et al., Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery. Journal of Biomedical Materials Research, 2000. 51(3): p. 293-298.
48. Wu, G.H., et al., Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells. Journal of the American Chemical Society, 2008. 130(26): p. 8175-+.
49. Amir, R.J., et al., Self-immolative dendrimers. Angewandte Chemie-International Edition, 2003. 42(37): p. 4494-4499.
50. Kulkarni, R.V. and B. Sa, Evaluation of pH-Sensitivity and Drug Release Characteristics of (Polyacrylamide-Grafted-Xanthan)-Carboxymethyl Cellulose-Based pH-Sensitive Interpenetrating Network Hydrogel Beads. Drug Development and Industrial Pharmacy, 2008. 34(12): p. 1406-1414.
51. Steinberg, Y., et al., Triggered release of aqueous content from liposome-derived sol-gel nanocapsules. Langmuir, 2007. 23(24): p. 12024-12031.
52. Derfus, A.M., et al., Remotely triggered release from magnetic nanoparticles. Advanced Materials, 2007. 19(22): p. 3932-+.
53. Kost, J., K. Leong, and R. Langer, Ultrasound-Enhanced Polymer Degradation and Release of Incorporated Substances - (Controlled Release Drug Delivery Systems). Proceedings of the National Academy of Sciences of the United States of America, 1989. 86(20): p. 7663-7666.
54. Ogura, M., S. Pahwal, and S. Mitragotri, Low-frequency sonophoresis: Current status and future prospects. Advanced Drug Delivery Reviews, 2008. 60(10): p. 1218-1223.
55. Ferrara, K.W., Driving delivery vehicles with ultrasound. Advanced Drug Delivery Reviews, 2008. 60(10): p. 1097-1102.
56. Wang, J., et al., High-Frequency Ultrasound-Responsive Block Copolymer Micelle. Langmuir, 2009. 25(22): p. 13201-13205.
57. Lentacker, I., S.C. De Smedt, and N.N. Sanders, Drug loaded microbubble design for ultrasound triggered delivery. Soft Matter, 2009. 5(11): p. 2161-2170.
58. Hernot, S. and A.L. Klibanov, Microbubbles in ultrasound-triggered drug and gene delivery. Advanced Drug Delivery Reviews, 2008. 60(10): p. 1153-1166.
59. Kheirolomoom, A., et al., Acoustically-active microbubbles conjugated to liposomes: Characterization of a proposed drug delivery vehicle. Journal of Controlled Release, 2007. 118(3): p. 275-284.
60. Dromi, S., et al. Pulsed-high intensity focused ultrasound (HIFU) enhanced delivery of Doxorubicin using heat sensitive liposome (Thermodox TM). in Proceedings of the 91st Annual Meeting of the Radiological Society of North America. 2005.
61. Dromi, S., et al., Pulsed-high intensity focused ultrasound and low temperature sensitive liposomes for enhanced targeted drug delivery and antitumor effect. Clinical Cancer Research, 2007. 13(9): p. 2722-2727.
62. Schroeder, A., et al., Ultrasound triggered release of cisplatin from liposomes in murine tumors. Journal of Controlled Release, 2009. 137(1): p. 63-68.
63. Husseini, G.A. and W.G. Pitt, Micelles and nanoparticles for ultrasonic drug and gene delivery. Advanced Drug Delivery Reviews, 2008. 60(10): p. 1137-1152.
64. Zhang, H.J., et al., High intensity focused ultrasound-responsive release behavior of PLA-b-PEG copolymer micelles. Journal of Controlled Release, 2009. 139(1): p. 31-39.
65. Apfel, R.E., Activatable infusable dispersions containing drops of a superheated liquid for methods of therapy and diagnosis, 1998, Google Patents.
66. Kripfgans, O.D., et al., Acoustic droplet vaporization for therapeutic and diagnostic applications. Ultrasound in Medicine and Biology, 2000. 26(7): p. 1177-1189.
67. Wong, Z.Z., et al., Bubble evolution in acoustic droplet vaporization at physiological temperature via ultra-high speed imaging. Soft Matter, 2011. 7(8): p. 4009-4016.
68. Qamar, A., et al., Dynamics of acoustic droplet vaporization in gas embolotherapy. Applied Physics Letters, 2010. 96(14).
69. Kripfgans, O.D., et al., In vivo droplet vaporization for occlusion therapy and phase aberration correction. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2002. 49(6): p. 726-738.
70. Sheeran, P.S., et al., Design of ultrasonically-activatable nanoparticles using low boiling point perfluorocarbons. Biomaterials, 2012. 33(11): p. 3262-3269.
71. Sheeran, P.S., et al., Decafluorobutane as a Phase-Change Contrast Agent for Low-Energy Extravascular Ultrasonic Imaging. Ultrasound in Medicine and Biology, 2011. 37(9): p. 1518-1530.
72. Wang, C.H., et al., Aptamer-conjugated and drug-loaded acoustic droplets for ultrasound theranosis. Biomaterials, 2012. 33(6): p. 1939-1947.
73. Zhang, X., R. Goncalves, and D.M. Mosser, The isolation and characterization of murine macrophages. Curr Protoc Immunol, 2008. Chapter 14: p. Unit 14 1.
74. Dayton, P.A., et al., Optical and acoustical observations of the effects of ultrasound on contrast agents. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, 1999. 46(1): p. 220-232.
75. Kakhniashvili, D.G., L.A. Bulla, and S.R. Goodman, The human erythrocyte proteome - Analysis by ion trap mass spectrometry. Molecular & Cellular Proteomics, 2004. 3(5): p. 501-509.
76. Kikkawa, Y. and J.H. Miner, Review: Lutheran/B-CAM: A laminin receptor on red blood cells and in various tissues. Connective Tissue Research, 2005. 46(4-5): p. 193-199.
77. Hall, J.E. and A.C. Guyton, Guyton and Hall textbook of medical physiology. 12th ed. 2011, Philadelphia, Pa.: Saunders/Elsevier. xix, 1091 p.