研究生: |
廖健鈞 Liao, Jian-June |
---|---|
論文名稱: |
金屬有機網絡衍生二硫化鈷於超電容之應用 Application of Metal Organic Framework Derived Cobalt Sulfide in Supercapacitors |
指導教授: |
蔡哲正
Tsai, Cho-Jen |
口試委員: |
林居南
Lin, Chu-Nan 游萃蓉 Yu, Tsui-Rung |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 54 |
中文關鍵詞: | 金屬有機網絡 、二硫化鈷 、超電容 、擬電容 |
外文關鍵詞: | Metal-organic framework, Cobalt sulfide, Supercapacitor, Pseudocapacitor |
相關次數: | 點閱:87 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
超電容因具備較高功率密度以及尚可的能量密度,被視為儲能系統未來之星,為了提升其能量密度,需使用混和型超電容提升其能量密度,但因多數金屬氧化物與碳材之複合材料製備不易,故本實驗使用製備相對容易的金屬有機網絡衍生二硫化鈷,以此材料做為電極活物,藉由其多孔性與高比表面積以及二硫化鈷的高導電性,提升超電容之電性表現。
本實驗透過不同的碳化熱處理溫度,調控金屬有機網絡衍生物之孔洞尺寸分布與比表面積,以及衍生二硫化鈷的晶粒大小與結晶性。實驗結果顯示,在實驗過程中以碳化溫度900°C製成之金屬有機網絡衍生二硫化鈷有最佳的電性表現,掃描速率0.5 mV/s下電容值達183.3 F/g,當掃描速率提升到20 mV/s電容值仍然有138.4 F/g。
Supercapacitors ( SCs ) are regard as one of the most potential energy storage systems, due to their high power density and acceptable energy density. In order to increase the energy density of SCs, we need to use hybrid supercapacitors. But the fabrication of the most metal oxide and carbon composite materials is complicated. Therefore, in this experiment, we use metal-organic framework derived CoS2 which is easier to prepare as active material in SCs. Through its porous and high surface area and high conductivity of CoS2, we hope that the SCs will deliver higher capacitance.
In this experiment, we control the pore size distribution, surface area, crystallinity, and grain size of MOF-derived CoS2 through different carbonization temperature. The results show that the MOF-derived CoS2 through 900°C carbonization temperature had the best electrochemical performance. The specific capacitance value was 183.3 F/g at the scan rate of 5 mV/s and shows a capacitance value of 138.4 F/g when the scan rate up to 20 mV/s.
1. The Pew Charitable trusts , Feb 2016 , Fig.1
2. Will supercapacitors supersede batteries ? Available online : www.electronicsweekly.com
3. Marin S. Halper, James C. Ellenbogen, Supercapacitors : A Brief Overview. Mar 2006.
4. Artal-Sevil, J., R. Bandrés, and G. Fernández, ULISES: Autonomous mobile robot using ultracapacitors-storage energy system. 2011. 1105-1110.
5. Simon, P. and Y. Gogotsi, Capacitive Energy Storage in Nanostructured Carbon–Electrolyte Systems. Accounts of Chemical Research, 2013. 46(5): p. 1094-1103.
6. Kierzek, K., et al., Electrochemical capacitors based on highly porous carbons prepared by KOH activation. Electrochimica Acta, 2004. 49(4): p. 515-523.
7. Largeot, C., et al., Relation between the Ion Size and Pore Size for an Electric Double-Layer Capacitor. Journal of the American Chemical Society, 2008. 130(9): p. 2730-2731.
8. Zhi, M., et al., Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale, 2013. 5(1): p. 72-88.
9. Trasatti, S. and G. Buzzanca, Ruthenium dioxide: A new interesting electrode material. Solid state structure and electrochemical behaviour. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1971. 29(2): p. A1-A5.
10. Yaghi, O.M. and H. Li, Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels. Journal of the American Chemical Society, 1995. 117(41): p. 10401-10402.
11. Howarth, A.J., et al., Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nature Reviews Materials, 2016. 1: p. 15018.
12. Eddaoudi, M., et al., Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Vol. 295. 2002. 469-72.
13. Li, B., et al., Emerging Multifunctional Metal–Organic Framework Materials. Advanced Materials, 2016. 28(40): p. 8819-8860.
14. Silva, P., et al., Multifunctional metal–organic frameworks: from academia to industrial applications. Chemical Society Reviews, 2015. 44(19): p. 6774-6803.
15. Xu, Y., et al., Metal-organic frameworks for direct electrochemical applications. Coordination Chemistry Reviews, 2018. 376: p. 292-318.
16. Salunkhe, R.R., Y.V. Kaneti, and Y. Yamauchi, Metal–Organic Framework-Derived Nanoporous Metal Oxides toward Supercapacitor Applications: Progress and Prospects. ACS Nano, 2017. 11(6): p. 5293-5308.
17. Liu, B., et al., Metal-Organic Framework as a Template for Porous Carbon Synthesis. Journal of the American Chemical Society, 2008. 130(16): p. 5390-5391.
18. Young, C., et al., Zeolitic imidazolate framework (ZIF-8) derived nanoporous carbon: the effect of carbonization temperature on the supercapacitor performance in an aqueous electrolyte. Physical Chemistry Chemical Physics, 2016. 18(42): p. 29308-29315.
19. Torad, N.L., et al., Electric Double-Layer Capacitors Based on Highly Graphitized Nanoporous Carbons Derived from ZIF-67. Chemistry – A European Journal, 2014. 20(26): p. 7895-7900.
20. Salunkhe, R.R., et al., Asymmetric Supercapacitors Using 3D Nanoporous Carbon and Cobalt Oxide Electrodes Synthesized from a Single Metal–Organic Framework. ACS Nano, 2015. 9(6): p. 6288-6296.
21. Jia, H., et al., Controlled synthesis of MOF-derived quadruple-shelled CoS2 hollow dodecahedrons as enhanced electrodes for supercapacitors. Electrochimica Acta, 2019. 312: p. 54-61.
22. Ren, J., et al., CoS2 hollow nanocubes derived from Co-Co Prussian blue analogue: High-performance electrode materials for supercapacitors. Journal of Electroanalytical Chemistry, 2019. 836: p. 30-37.
23. Ardizzone, S., G. Fregonara, and S. Trasatti, “Inner” and “outer” active surface of RuO2 electrodes. Electrochimica Acta, 1990. 35(1): p. 263-267.