研究生: |
范吉炫 Fan, Chi-Shuan |
---|---|
論文名稱: |
探討內皮間質轉化衍生細胞刺激巨噬細胞產生非典型活化及腫瘤惡性 Endothelial-Mesenchymal Transition-Derived Cells Promote Macrophage M2-Polarization and Tumor Malignancy |
指導教授: |
黃智興
Huang, Tze-Sing 汪宏達 Wang, Horng-Dar |
口試委員: |
陳雅雯
Chen, Ya-Wen 吳漢忠 Wu, Han-Chung 楊慕華 Yang, Muh-Hwa |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 145 |
中文關鍵詞: | 內皮間質轉化衍生細胞 、巨噬細胞 、腫瘤惡性 、腫瘤幹細胞 |
外文關鍵詞: | Endothelial-Mesenchymal Transition-Derived Cells, M2-Polarization, macrophahge, stemness, HSP90alpha, OPN |
相關次數: | 點閱:76 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
OPN是一種磷酸化的醣蛋白同時具許多生理意義,能夠刺激內皮細胞並調控血管新生,然而在血管新生的過程中,血管上的內皮細胞會透過EndoMT的方式生產新生血管的出芽以利血管分支的產生,我們好奇OPN能否影響並調控EndoMT的發生,在臨床上的確能在大腸直腸腫瘤組織的檢體上觀察到在表現OPN細胞周圍有EndoMT細胞的分佈,進一步我们將內皮細胞處理OPN重組蛋白以觀查刺激內皮細胞發生EndoMT情況及探討可能的機制。我们發現OPN能夠透過與Integrin αVβ3作用調控EndoMT的發生,而非是透過與CD44的反應,在OPN與Integrin αVβ3的作用後會活化PI3K/Akt/TSC2路逕,讓mTORC1活化的方式以增加HIF-1α蛋白質生合成,增加後的HIF-1α會使的TCF12基因活化並表現,TCF12再與EZH2直接作行成基因轉錄的負向調控複合體,作用在VE-cadherin基因上抑制其表現以利於EndoMT的發生。經過EndoMT過程內皮細胞會轉化帶有癌纖維母細胞特性,這類的細胞能夠產生並分泌重要的蛋白質正面地幫助腫瘤的生長及轉移,我们利用microwestern array去分析EndoMT細胞所分泌的上清液,並且找到HSP90α及JAG1為EndoMT細胞所分泌,並且為刺激大腸直腸癌細胞帶癌幹細胞特性的後選因子,因此未來針對OPN刺激形成的EndoMT細胞可以作為治癌症的一個方向。
在腫瘤微環境內間質細胞是很重要的存在,能去支持並幫助腫瘤的生長及惡化,其中EndoMT細胞不但是腫瘤微環境中的一個要角並幫助腫瘤的生長,然而EndoMT細胞是否能與巨噬細胞作用調控發炎反應,並影響腫瘤微環境,其中的機制依然值得進一步探討,我們實驗中發現EndoMT細胞能夠分泌HSP90α,HSP90α能活化NF-κB訊號傳路徑,並造成巨噬細胞M2類型的轉變,HSP90α刺激並分化形成的M2巨噬細胞能夠分泌IL-10及表現CD163, CD204,另外分泌性的HSP90α也能與CD91 及TLR4受器結合,活化JAK2 /YK2訊號傳遞路徑使的STAT3磷酸化,磷酸化的STAT3展現轉錄因子的特性正向調控Sec22b基因的表現,導致巨噬細胞phagocytosis的能力降低,在動物實驗中我们也觀察到EndoMT cells會吸引表現F4/80+巨嗜細胞進入腫瘤組織,並且有較多M2巨噬細胞的存在,然而在實驗的小鼠有接受HSP90α mAb的組別,可以觀察到腫瘤微環境中的HSP90α抑制能減緩腫瘤的生長,因此針對分泌性的HSP90α作為治癌症的一個方向以抑至腫瘤微環境中的M2巨噬細胞及癌幹細胞可以達到治療癌症一個可能。
Osteopontin (OPN) is a multi-functional phospho-glycoprotein that can stimulate angiogenesis through acting on endothelial cells. As angiogenic sprouting involves endothelial-to-mesenchymal transition (EndoMT), we are intrigued to know whether OPN exerts an effect on EndoMT. Clinically, we indeed detected EndoMT-derived cells next to OPN-expressing cells in colorectal cancer tissues. Furthermore, we treated OPN to primary cultures of endothelial cells to investigate the EndoMT-inducing activity and the underlying mechanisms. Integrin αVβ3 rather than CD44 is involved in OPN-induced EndoMT. OPN-integrin αVβ3 engagement induces HIF-1α expression through a PI3K/Akt/TSC2-mediated and mTORC1-dependent protein synthesis pathway, which in turn trans-activates TCF12 gene expression. TCF12 further interacts with EZH2 and histone deacetylases to transcriptionally repress VE-cadherin gene and thus facilitates EndoMT. Like cancer-associated fibroblasts, EndoMT-derived cells promote tumor growth and metastasis by secreting certain proteins. Secreted HSP90α and JAG1 are the candidates suggested by microwestern array assay, and are herein verified to induce stemness properties in colorectal cancer cells. As OPN is overexpressed in human cancers, OPN-induced EndoMT and EndoMT-derived cells can be potentially taken as cancer therapeutic targets. EndoMT-derived cells could be considered as stromal cells that have emerged as important stimulators in tumor microenvironment reprogramming to support tumor growth and malignancy. EndoMT-derived cells, as one of the units of tumor microenvironment, could interact with surrounding cells and contribute to tumor growth. However, the underlying mechanism on how EndoMT-derived cells interact with macrophages to suppress inflammation in tumor microenvironment is still unclear. In this study, we show that the HSP90α secreted from EndoMT-derived cells is essential for M2 macrophage polarization. It increases the expressions of M2-like macrophage markers like CD163, CD204, and IL-10 through NF-κB signaling cascade. Moreover, HSP90α binds with CD91 and TLR4 receptors to initiate the activation of JAK2 and TYK2, subsequently leads to phosphorylation of STAT3. Activated STAT3 then induces Sec22b transcription and suppresses the phagocytic ability of macrophages. We demonstrate that EndoMT cells induce F4/80+ macrophage infiltration into tumor tissue and increase the level of M2-like macrophages to promote tumor growth in mouse models. Nonetheless, such effect on tumor growth could be diminished through intravenous injection of HSP90α mAb. Taken together, our results suggest that EndoMT cells induce M2-like macrophages polarization through HSP90α secretion to promote tumor growth, indicating that HSP90α could be a potential therapeutic target for pancreatic cancer.
103年癌症登記年報. 衛生福利部國民健康署; 2014.
Adelipour M, Abdollahpour F, Allameh A. Cancer stem cell markers. Molecular and Biochemical Diagnosis (Journal). 2016;2:1-16.
Armstrong EJ, Bischoff J. Heart Valve Development. Circulation Research. 2004;95:459.
Armulik A, Abramsson A, Betsholtz C. Endothelial/Pericyte Interactions. Circulation Research. 2005;97:512.
Basu S, Binder RJ, Ramalingam T, Srivastava PK. CD91 Is a Common Receptor for Heat Shock Proteins gp96, hsp90, hsp70, and Calreticulin. Immunity. 2001;14:303-13.
Brugarolas JB, Vazquez F, Reddy A, Sellers WR, Kaelin WG. TSC2 regulates VEGF through mTOR-dependent and -independent pathways. Cancer Cell. 2003;4:147-58.
Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED, Stebbings LA, et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature. 2010;467:1109.
Chan DS, Lau R, Aune D, Vieira R, Greenwood DC, Kampman E, et al. Red and processed meat and colorectal cancer incidence: meta-analysis of prospective studies. PLoS One. 2011;6:e20456.
Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, Finetti P, et al. Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res. 2009;69:1302-13.
Chari ST. Detecting Early Pancreatic Cancer: Problems and Prospects. Seminars in Oncology. 2007;34:284-94.
Chen JS, Hsu YM, Chen CC, Chen LL, Lee CC, Huang TS. Secreted heat shock protein 90alpha induces colorectal cancer cell invasion through CD91/LRP-1 and NF-kappaB-mediated integrin alphaV expression. J Biol Chem. 2010;285:25458-66.
Chen W-S, Chen C-C, Chen L-L, Lee C-C, Huang T-S. Secreted Heat Shock Protein 90α (HSP90α) Induces Nuclear Factor-κB-mediated TCF12 Protein Expression to Down-regulate E-cadherin and to Enhance Colorectal Cancer Cell Migration and Invasion. Journal of Biological Chemistry. 2013;288:9001-10.
Cheng C-F, Fan J, Fedesco M, Guan S, Li Y, Bandyopadhyay B, et al. Transforming Growth Factor α (TGFα)-Stimulated Secretion of HSP90α: Using the Receptor LRP-1/CD91 To Promote Human Skin Cell Migration against a TGFβ-Rich Environment during Wound Healing. Molecular and Cellular Biology. 2008;28:3344-58.
Cheng J, Kang X, Zhang S, Yeh ETH. SUMO-Specific Protease 1 Is Essential for Stabilization of HIF1α during Hypoxia. Cell. 2007;131:584-95.
Chi J-T, Chang HY, Haraldsen G, Jahnsen FL, Troyanskaya OG, Chang DS, et al. Endothelial cell diversity revealed by global expression profiling. Proceedings of the National Academy of Sciences. 2003;100:10623-8.
Chu GC, Kimmelman AC, Hezel AF, DePinho RA. Stromal biology of pancreatic cancer. Journal of Cellular Biochemistry. 2007;101:887-907.
Compernolle V, Brusselmans K, Franco D, Moorman A, Dewerchin M, Collen D, et al. Cardia bifida, defective heart development and abnormal neural crest migration in embryos lacking hypoxia-inducible factor-1α. Cardiovascular Research. 2003;60:569-79.
Dai J, Peng L, Fan K, Wang H, Wei R, Ji G, et al. Osteopontin induces angiogenesis through activation of PI3K/AKT and ERK1/2 in endothelial cells. Oncogene. 2009;28:3412.
Dickson MA, Okuno SH, Keohan ML, Maki RG, D'Adamo DR, Akhurst TJ, et al. Phase II study of the HSP90-inhibitor BIIB021 in gastrointestinal stromal tumors. Annals of Oncology. 2013;24:252-7.
Duyndam MCA, Hulscher STM, van der Wall E, Pinedo HM, Boven E. Evidence for a Role of p38 Kinase in Hypoxia-inducible Factor 1-independent Induction of Vascular Endothelial Growth Factor Expression by Sodium Arsenite. Journal of Biological Chemistry. 2003;278:6885-95.
Easwaran H, Tsai H-C, Baylin Stephen B. Cancer Epigenetics: Tumor Heterogeneity, Plasticity of Stem-like States, and Drug Resistance. Molecular Cell. 2014;54:716-27.
Edwards BK, Ward E, Kohler BA, Eheman C, Zauber AG, Anderson RN, et al. Annual report to the nation on the status of cancer, 1975-2006, featuring colorectal cancer trends and impact of interventions (risk factors, screening, and treatment) to reduce future rates. Cancer. 2010;116:544-73.
Evrard SM, Lecce L, Michelis KC, Nomura-Kitabayashi A, Pandey G, Purushothaman KR, et al. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nature Communications. 2016;7:11853.
Farrow DC, Vaughan TL, Hansten PD, Stanford JL, Risch HA, Gammon MD, et al. Use of aspirin and other nonsteroidal anti-inflammatory drugs and risk of esophageal and gastric cancer. Cancer Epidemiology Biomarkers & Prevention. 1998;7:97.
Ferlay J SI, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray, F. GLOBOCAN 2012 v1.1, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 [Internet]. Lyon, France: International Agency for Research on Cancer. 2014.
Floris G, Sciot R, Wozniak A, Van Looy T, Wellens J, Faa G, et al. The Novel HSP90 Inhibitor, IPI-493, Is Highly Effective in Human Gastrostrointestinal Stromal Tumor Xenografts Carrying Heterogeneous <em>KIT</em> Mutations. Clinical Cancer Research. 2011;17:5604.
Gajewski TF, Schreiber H, Fu Y-X. Innate and adaptive immune cells in the tumor microenvironment. Nature Immunology. 2013;14:1014.
Gao P, Zhang H, Dinavahi R, Li F, Xiang Y, Raman V, et al. HIF-Dependent Antitumorigenic Effect of Antioxidants In Vivo. Cancer Cell. 2007;12:230-8.
Gaspar N, Sharp SY, Eccles SA, Gowan S, Popov S, Jones C, et al. Mechanistic Evaluation of the Novel HSP90 Inhibitor NVP-AUY922 in Adult and Pediatric Glioblastoma. Molecular Cancer Therapeutics. 2010;9:1219.
Gething M-J, Sambrook J. Protein folding in the cell. Nature. 1992;355:33.
Gomez-Casal R, Zhang P, Wang H, Gardner P, Herman J, Levina V. Abstract 2491: Effect of HSP90 inhibitor ganetespib on stemness in small cell lung cancer. Cancer Research. 2016;76:2491.
Gopal U, Bohonowych JE, Lema-Tome C, Liu A, Garrett-Mayer E, Wang B, et al. A Novel Extracellular Hsp90 Mediated Co-Receptor Function for LRP1 Regulates EphA2 Dependent Glioblastoma Cell Invasion. PLOS ONE. 2011;6:e17649.
Grivennikov SI, Greten FR, Karin M. Immunity, Inflammation, and Cancer. Cell. 2010;140:883-99.
He S, Smith DL, Sequeira M, Sang J, Bates RC, Proia DA. The HSP90 inhibitor ganetespib has chemosensitizer and radiosensitizer activity in colorectal cancer. Investigational New Drugs. 2014;32:577-86.
Hezel AF, Kimmelman AC, Stanger BZ, Bardeesy N, DePinho RA. Genetics and biology of pancreatic ductal adenocarcinoma. Genes & Development. 2006;20:1218-49.
Hollis M, Nair K, Vyas A, Chaturvedi LS, Gambhir S, Vyas D. MicroRNAs potential utility in colon cancer: Early detection, prognosis, and chemosensitivity. World J Gastroenterol. 2015;21:8284-92.
Hope KJ, Jin L, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol. 2004;5:738-43.
Ilic M, Ilic I. Epidemiology of pancreatic cancer. World Journal of Gastroenterology. 2016;22:9694-705.
Inoki K, Li Y, Zhu T, Wu J, Guan K-L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nature Cell Biology. 2002;4:648.
Jarnicki AG, Lysaght J, Todryk S, Mills KHG. Suppression of Antitumor Immunity by IL-10 and TGF-β-Producing T Cells Infiltrating the Growing Tumor: Influence of Tumor Environment on the Induction of CD4<sup>+</sup> and CD8<sup>+</sup> Regulatory T Cells. The Journal of Immunology. 2006;177:896.
Jeong J-W, Bae M-K, Ahn M-Y, Kim S-H, Sohn T-K, Bae M-H, et al. Regulation and Destabilization of HIF-1α by ARD1-Mediated Acetylation. Cell. 2002;111:709-20.
Kalluri R, Zeisberg M. Fibroblasts in cancer. Nature Reviews Cancer. 2006;6:392.
Katayama R, Khan TM, Benes C, Lifshits E, Ebi H, Rivera VM, et al. Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK. Proceedings of the National Academy of Sciences. 2011;108:7535-40.
Kim Y, Nam HJ, Lee J, Park DY, Kim C, Yu YS, et al. Methylation-dependent regulation of HIF-1α stability restricts retinal and tumour angiogenesis. Nature Communications. 2016;7:10347.
La Rosa S, Sessa F, Capella C. Acinar Cell Carcinoma of the Pancreas: Overview of Clinicopathologic Features and Insights into the Molecular Pathology. Frontiers in Medicine. 2015;2:41.
Lee C-C, Chen W-S, Chen C-C, Chen L-L, Lin Y-S, Fan C-S, et al. TCF12 Protein Functions as Transcriptional Repressor of E-cadherin, and Its Overexpression Is Correlated with Metastasis of Colorectal Cancer. Journal of Biological Chemistry. 2012;287:2798-809.
Li W, Li Y, Guan S, Fan J, Cheng C-F, Bright AM, et al. Extracellular heat shock protein-90α: linking hypoxia to skin cell motility and wound healing. The EMBO Journal. 2007;26:1221-33.
Li W, Sahu D, Tsen F. Secreted heat shock protein-90 (Hsp90) in wound healing and cancer. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2012;1823:730-41.
Li Z, Jimenez SA. Protein kinase Cδ and c-Abl kinase are required for transforming growth factor β induction of endothelial–mesenchymal transition in vitro. Arthritis & Rheumatism. 2011;63:2473-83.
Lim SO, Park SG, Yoo J-H, Park YM, Kim H-J, Jang K-T, et al. Expression of heat shock proteins (HSP27, HSP60, HSP70, HSP90, GRP78, GRP94) in hepatitis B virus-related hepatocellular carcinomas and dysplastic nodules. World Journal of Gastroenterology : WJG. 2005;11:2072-9.
Lindsell CE, Shawber CJ, Boulter J, Weinmaster G. Jagged: A mammalian ligand that activates notch1. Cell. 1995;80:909-17.
Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nature Medicine. 2011;17:211.
Lonardo E, Hermann Patrick C, Mueller M-T, Huber S, Balic A, Miranda-Lorenzo I, et al. Nodal/Activin Signaling Drives Self-Renewal and Tumorigenicity of Pancreatic Cancer Stem Cells and Provides a Target for Combined Drug Therapy. Cell Stem Cell. 2011;9:433-46.
Lu J, Ye X, Fan F, Xia L, Bhattacharya R, Bellister S, et al. Endothelial Cells Promote the Colorectal Cancer Stem Cell Phenotype through a Soluble Form of Jagged-1. Cancer Cell. 2013;23:171-85.
Lu P, Weaver VM, Werb Z. The extracellular matrix: A dynamic niche in cancer progression. The Journal of Cell Biology. 2012;196:395.
Lu TY, Lu RM, Liao MY, Yu J, Chung CH, Kao CF, et al. Epithelial cell adhesion molecule regulation is associated with the maintenance of the undifferentiated phenotype of human embryonic stem cells. J Biol Chem. 2010;285:8719-32.
Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454:436.
Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in Immunology. 2002;23:549-55.
Markwald RR, Fitzharris TP, Manasek FJ. Structural development of endocardial cushions. American Journal of Anatomy. 1977;148:85-119.
Markwald RR, Fitzharris TP, Smith WNA. Structural analysis of endocardial cytodifferentiation. Developmental Biology. 1975;42:160-80.
Memmi EM, Sanarico AG, Giacobbe A, Peschiaroli A, Frezza V, Cicalese A, et al. p63 Sustains self-renewal of mammary cancer stem cells through regulation of Sonic Hedgehog signaling. Proc Natl Acad Sci U S A. 2015;112:3499-504.
Mitra A, Mishra L, Li S. EMT, CTCs and CSCs in tumor relapse and drug-resistance. Oncotarget. 2015;6:10697-711.
Modi S, Stopeck A, Linden H, Solit D, Chandarlapaty S, Rosen N, et al. HSP90 Inhibition Is Effective in Breast Cancer: A Phase II Trial of Tanespimycin (17-AAG) Plus Trastuzumab in Patients with HER2-Positive Metastatic Breast Cancer Progressing on Trastuzumab. Clinical Cancer Research. 2011;17:5132.
Mumm JS, Schroeter EH, Saxena MT, Griesemer A, Tian X, Pan DJ, et al. A Ligand-Induced Extracellular Cleavage Regulates γ-Secretase-like Proteolytic Activation of Notch1. Molecular Cell. 2000;5:197-206.
Mungai PT, Waypa GB, Jairaman A, Prakriya M, Dokic D, Ball MK, et al. Hypoxia Triggers AMPK Activation through Reactive Oxygen Species-Mediated Activation of Calcium Release-Activated Calcium Channels. Molecular and Cellular Biology. 2011;31:3531-45.
Nakazawa MS, Keith B, Simon MC. Oxygen availability and metabolic adaptations. Nature Reviews Cancer. 2016;16:663.
Natsuizaka M, Whelan KA, Kagawa S, Tanaka K, Giroux V, Chandramouleeswaran PM, et al. Interplay between Notch1 and Notch3 promotes EMT and tumor initiation in squamous cell carcinoma. Nature Communications. 2017;8:1758.
Niessen K, Karsan A. Notch Signaling in Cardiac Development. Circulation Research. 2008;102:1169.
Nolan KD, Kaur J, Isaacs JS. Secreted heat shock protein 90 promotes prostate cancer stem cell heterogeneity. Oncotarget. 2017;8:19323-41.
Ohashi S, Natsuizaka M, Naganuma S, Kagawa S, Kimura S, Itoh H, et al. A NOTCH3-Mediated Squamous Cell Differentiation Program Limits Expansion of EMT-Competent Cells That Express the ZEB Transcription Factors. Cancer Research. 2011;71:6836.
Okła K, Wertel I, Polak G, Surówka J, Wawruszak A, Kotarski J. Tumor-Associated Macrophages and Myeloid-Derived Suppressor Cells as Immunosuppressive Mechanism in Ovarian Cancer Patients: Progress and Challenges. International Reviews of Immunology. 2016;35:372-85.
Pannuti A, Foreman K, Rizzo P, Osipo C, Golde T, Osborne B, et al. Targeting Notch to Target Cancer Stem Cells. Clinical Cancer Research. 2010;16:3141.
Peinado H, del Carmen Iglesias‐de la Cruz M, Olmeda D, Csiszar K, Fong KSK, Vega S, et al. A molecular role for lysyl oxidase‐like 2 enzyme in Snail regulation and tumor progression. 2005;24:3446.
Piera-Velazquez S, Li Z, Jimenez SA. Role of Endothelial-Mesenchymal Transition (EndoMT) in the Pathogenesis of Fibrotic Disorders. The American Journal of Pathology. 2011;179:1074-80.
Potenta S, Zeisberg E, Kalluri R. The role of endothelial-to-mesenchymal transition in cancer progression. British Journal Of Cancer. 2008;99:1375.
Radtke F, Raj K. The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nature Reviews Cancer. 2003;3:756.
Ramamoorthy P, Rangarajan P, Jensen R, Anant S. Abstract 3314: Targeting Hsp90 affects stem cell signaling in triple negative breast cancer. Cancer Research. 2016;76:3314.
Ranchoux B, Antigny F, Rucker-Martin C, Hautefort A, Péchoux C, Bogaard HJ, et al. Endothelial-to-Mesenchymal Transition in Pulmonary Hypertension. Circulation. 2015;131:1006.
Ransohoff DF, Sox HC. Clinical Practice Guidelines for Colorectal Cancer Screening: New Recommendations and New Challenges. Jama. 2016;315:2529-31.
Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105.
Rheinbay E, Suvà Mario L, Gillespie Shawn M, Wakimoto H, Patel Anoop P, Shahid M, et al. An Aberrant Transcription Factor Network Essential for Wnt Signaling and Stem Cell Maintenance in Glioblastoma. Cell Reports. 2013;3:1567-79.
Rodrigues LR, Teixeira JA, Schmitt FL, Paulsson M, Lindmark-Mänsson H. The Role of Osteopontin in Tumor Progression and Metastasis in Breast Cancer. Cancer Epidemiology Biomarkers & Prevention. 2007;16:1087.
Ryan HE, Lo J, Johnson RS. HIF‐1α is required for solid tumor formation and embryonic vascularization. 1998;17:3005.
Sakata Y, Kamei CN, Nakagami H, Bronson R, Liao JK, Chin MT. Ventricular septal defect and cardiomyopathy in mice lacking the transcription factor CHF1/Hey2. Proceedings of the National Academy of Sciences. 2002;99:16197-202.
Schmoll HJ, Van Cutsem E, Stein A, Valentini V, Glimelius B, Haustermans K, et al. ESMO Consensus Guidelines for management of patients with colon and rectal cancer. a personalized approach to clinical decision making. Ann Oncol. 2012;23:2479-516.
Schreinemachers DM, Everson RB. Aspirin Use and Lung, Colon, and Breast Cancer Incidence in a Prospective Study. Epidemiology. 1994;5:138-46.
Semenza GL. Oxygen Sensing, Homeostasis, and Disease. New England Journal of Medicine. 2011;365:537-47.
Skobe M, Hamberg LM, Hawighorst T, Schirner M, Wolf GL, Alitalo K, et al. Concurrent Induction of Lymphangiogenesis, Angiogenesis, and Macrophage Recruitment by Vascular Endothelial Growth Factor-C in Melanoma. The American Journal of Pathology. 2001;159:893-903.
Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M, et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature. 2013;496:101.
Storz P. Acinar cell plasticity and development of pancreatic ductal adenocarcinoma. Nature Reviews Gastroenterology &Amp; Hepatology. 2017;14:296.
Tata PR, Rajagopal J. Cellular plasticity: 1712 to the present day. Current Opinion in Cell Biology. 2016;43:46-54.
Thun MJ, Namboodiri MM, Heath CW. Aspirin Use and Reduced Risk of Fatal Colon Cancer. New England Journal of Medicine. 1991;325:1593-6.
Tsutsumi S, Neckers L. Extracellular heat shock protein 90: A role for a molecular chaperone in cell motility and cancer metastasis. Cancer Science. 2007;98:1536-9.
Tukaj S, Kleszczyński K, Vafia K, Groth S, Meyersburg D, Trzonkowski P, et al. Aberrant Expression and Secretion of Heat Shock Protein 90 in Patients with Bullous Pemphigoid. PLOS ONE. 2013;8:e70496.
Van Cutsem E, Cervantes A, Nordlinger B, Arnold D, Group EGW. Metastatic colorectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014;25 Suppl 3:iii1-9.
van Engeland M, Weijenberg MP, Roemen GM, Brink M, de Bruine AP, Goldbohm RA, et al. Effects of dietary folate and alcohol intake on promoter methylation in sporadic colorectal cancer: the Netherlands cohort study on diet and cancer. Cancer research. 2003;63:3133-7.
Vermeulen L, De Sousa EMF, van der Heijden M, Cameron K, de Jong JH, Borovski T, et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol. 2010;12:468-76.
Walsh N, Larkin A, Swan N, Conlon K, Dowling P, McDermott R, et al. RNAi knockdown of Hop (Hsp70/Hsp90 organising protein) decreases invasion via MMP-2 down regulation. Cancer Letters. 2011;306:180-9.
Wang KX, Denhardt DT. Osteopontin: Role in immune regulation and stress responses. Cytokine & Growth Factor Reviews. 2008;19:333-45.
Wang X, Song X, Zhuo W, Fu Y, Shi H, Liang Y, et al. The regulatory mechanism of Hsp90α secretion and its function in tumor malignancy. Proceedings of the National Academy of Sciences. 2009;106:21288-93.
Wolfgang CL, Herman JM, Laheru DA, Klein AP, Erdek MA, Fishman EK, et al. Recent Progress in Pancreatic Cancer. CA: a cancer journal for clinicians. 2013;63:318-48.
Wong MCS, Jiang JY, Liang M, Fang Y, Yeung MS, Sung JJY. Global temporal patterns of pancreatic cancer and association with socioeconomic development. Scientific Reports. 2017;7:3165.
Yamashita T, Wang XW. Cancer stem cells in the development of liver cancer. J Clin Invest. 2013;123:1911-8.
Yang M-H, Wu M-Z, Chiou S-H, Chen P-M, Chang S-Y, Liu C-J, et al. Direct regulation of TWIST by HIF-1α promotes metastasis. Nature Cell Biology. 2008;10:295.
Yang SJ, Park YS, Cho JH, Moon B, An HJ, Lee JY, et al. Regulation of hypoxia responses by flavin adenine dinucleotide‐dependent modulation of HIF‐1α protein stability. 2017;36:1011.
Yoon D, Pastore YD, Divoky V, Liu E, Mlodnicka AE, Rainey K, et al. Hypoxia-inducible Factor-1 Deficiency Results in Dysregulated Erythropoiesis Signaling and Iron Homeostasis in Mouse Development. Journal of Biological Chemistry. 2006;281:25703-11.
Yoon S-J, Foley JW, Baker JC. HEB associates with PRC2 and SMAD2/3 to regulate developmental fates. Nature Communications. 2015;6:6546.
Zeisberg EM, Potenta S, Xie L, Zeisberg M, Kalluri R. Discovery of Endothelial to Mesenchymal Transition as a Source for Carcinoma-Associated Fibroblasts. Cancer Research. 2007a;67:10123.
Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nature Medicine. 2007b;13:952.
Zhang W, Shi X, Peng Y, Wu M, Zhang P, Xie R, et al. HIF-1α Promotes Epithelial-Mesenchymal Transition and Metastasis through Direct Regulation of ZEB1 in Colorectal Cancer. PLOS ONE. 2015;10:e0129603.