研究生: |
蔡志杰 Cai, Jhih-Jie |
---|---|
論文名稱: |
雙I型永磁內置式驅動馬達分析及優化 Analysis and Optimization of Double-I Type Interior Permanent Magnet Propulsion Motors |
指導教授: |
王培仁
Wang, Pei-Jen |
口試委員: |
茆尚勳
Mao, Shang-Hsun 李昇憲 Li, Sheng-Shian 王勝清 Wang, Sheng-Ching |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 121 |
中文關鍵詞: | 車用馬達 、雙I型永磁內置結構馬達 、優化設計 |
外文關鍵詞: | Propusion Motors, Double-I Type IPM Motors, Design Optimization |
相關次數: | 點閱:70 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來全球暖化效應導致氣候變遷及雨林區快速消失,造成新能源汽車快速發展,世界工業大國預測於2030年,新能源汽車總數將成長到一億二千萬輛以上。新能源汽車生產成本以電池儲能系統及驅動動力系統為最大佔比,在固定車載電池容量下,必須追求高效率及性能為目標,故驅動馬達必須具備高輸出轉矩、功率密度、運轉速度及效率之基本要件。中小型電動車市場所採用之驅動馬達以永磁內置式同步電機為主,此型馬達具高效率、高凸極比及寬廣運轉速度範圍。
本論文針對永磁內置式車用驅動馬達進行分析,因其轉子形狀直接影響整體性能,而轉子中永磁可有多種擺放方式及位置,目前較常採用V型、▽型及U型結構進行設計,論文中先比較分析各基本型式之轉子設計。接續選擇高功率密度的BMW i3系列驅動馬達為分析範例,根據其專利內容為逆向工程分析基礎,推導高性能驅動馬達之核心設計參數,整理後提出一套永磁電機快速設計與優化流程,驗證此範例電機之設計優化合理性。最後根據美國國家研究機構ORNL之公開測試數據,進行以商用電磁場分析軟體解析範例電機之設計參數,更採用SmartDO®分析優化軟體,進行轉子結構設計參數之優化分析,確認此範例電機之設計實已達最高功率密度之設計極限值。
In recent years, the global warming effects have led to climate changes and the fast shrinkage in rainforest zones. The solution is to develop new energyVehicles in a faster pace. The G7 countries have been predicting new energyVehicles will grow to more than 120 million units by the year of 2030. The production costs of new energyVehicles are mainly accounted for battery systems and drive-train power systems. At constant battery capacity, higher energy efficiency and Vehicle performance must be met to maintain the progress; therefore, the traction motors must have high power density, output torque, operational speed and average energy efficiency. In the compact electricVehicle market, Interior Permanent Magnet (IPM) motors are dominant in the drive trains because IPM motors have higher saliency ratio, wider operating speed, and higher average energy efficiency.
The objective of this thesis is to analyze IPM motors for electricVehicles especially the rotor geometry since the motor performance relies on the placement of permanent magnets , namely theV-type, ▽-type, and U-type structure. First, comparisons and analysis are made on the Various rotor types. Then, BMW i3 series traction motor with power density close to 9.1 kW/L is chosen for a benchmark example. And comprehensive studies on the key technologies of the benchmark motor are reversely engineered from the BMW patents. Then, the design and optimization procedure are proposed for the benchmark motor to verify the rationale of the design philosophy. Based on the published ORNL test data, pertinent design parameters are optimally analyzedVia reverse engineering method. A commercial optimization software SmartDO® is employed for the rotor design optimization. In conclusion, the design parameters of the benchmark motor has been confiremed to reach the design limit at the peak power density.
[1] P. Cazzola, M. Gorner, R. Schuitmaker and E. Maroney, Global EV outlook 2016, International Energy Agency, France, 2016.
[2] 鄒國堂,「電動汽車電機及驅動設計、分析及應用」,機械工業出版社, ISBN:9787111600442,2018。
[3] Lipo, Thomas A., Introduction to AC machine design, John Wiley & Sons, ISBN:9781119352181, 2017.
[4] US Drive, “Electrical and electronics technical team roadmap”, Partnership Plan, Roadmaps, and Other Documents 2013.
[5] Z. Q. Zhu and D. Howe, “Electrical machines and drives for electric, hybrid, and fuel cellVehicles”, Proceedings of the IEEE, Vol. 95, no. 4, pp. 746-765, 2007.
[6] W. L. Soong and N. Ertugrul, “Field-weakening performance of interior permanent-magnet motors”, IEEE Transactions on Industry Applications, Vol. 38, no. 5, pp. 1251-1258, 2002.
[7] 王艾萌,「新能源汽車新型電機的設計及弱磁控制」,機械工業出版社, ISBN:9787111448082,2014。
[8] M. Felden, P. Bütterling, P. Jeck, L. Eckstein, and K. Hameyer, “ElectricVehicle drive trains: From the specification sheet to the drive train concept”, Proceedings of 14th International Power Electronics and Motion Control Conference EPE-PEMC 2010, pp. S11-9, 2010.
[9] J. Merwerth, “The hybrid-synchronous machine of the new i3 & i8”, Powerpoint presentation by BMW Group, München, 2014.
[10] M. M. John, “Electric Motor R&D”, Powerpoint presentation by Oak Ridge National Laboratory, 2013.
[11] M. Olszewski, “Evaluation of the 2010 Toyota Prius hybrid synergy drive system”, Oak Ridge National Laboratory, US Dept. Energy, 2011.
[12] US Drive, “Electrical and electronics technical team roadmap”, Partnership Plan, Roadmaps, and Other Documents, 2013.
[13] S. Hanley, “Nissan LEAF Best Selling Car In Norway & Top Selling EV In Europe”. Retrived from: https://cleantechnica.com/2019/01/21/nissan-LEAF-best-selling-car-in-norway-top-selling-ev-in-europe/, 2019.
[14] T. Burress, “Electrical performance, reliability analysis, and characterization”, presented at the US Dept. Vehicle Technologies Office Annu. Merit Rev., US Dept. Energy, 2017.
[15] A. Wang, Y. Jia, and W. Soong, “Comparison of five topologies for an interior permanent-magnet machine for a hybrid electricVehicle”, IEEE Transactions on Magnetics, Vol. 47, no. 10, pp. 3606-3609, 2011.
[16] X. Liu, H. Chen, J. Zhao, and A. Belahcen, “Research on the performances and parameters of interior PMSM used for electricVehicles”, IEEE Transactions on Industrial Electronics, Vol. 63, no. 6, pp. 3533-3545, 2016.
[17] M. H. Hwang, J. H. Han, D. H. Kim, and H. R. Cha, “Design and analysis of rotor shapes for IPM motors in EV power traction platforms”, Energies, Vol. 11, no. 10, p. 2601, 2018.
[18] T. A. Huynh,, and M.F. Hsieh, “Performance analysis of permanent magnet motors for electricVehicles (EV) traction considering driving cycles”, Energies, Vol. 11. 6, p. 1385, 2018.
[19] Y. Yang, S. M. Castano, R. Yang, M. Kasprzak, B. Bilgin, A. Sathyan, H. Dadkhah, A. Emadi, “Design and comparison of interior permanent magnet motor topologies for traction applications”, IEEE Transactions on Transportation Electrification, Vol. 3. 1, pp. 86-97, 2016.
[20] Y. Li, H. Yang, H. Lin, S. Fang, W. Wang, “A novel magnet-axis-shifted hybrid permanent magnet machine for electricVehicle applications”, Energies, Vol. 12. 4, p. 641, 2019.
[21] J. Merwerth, J. Halbedel, and G. Schlangen, “Electrical drive motor for a Vehicle”, U.S. Patent No. 8,575,807 B2 Nov., 2013.
[22] J. Blum, R. Doerfer, J. Merwerth, Z. Zheng, and M. Schwarzer, “Vibration prevention in synchronous machines”, U.S. Patent No. 9,876,403 B1 Jan., 2018.
[23] J. R. Hendershot and T. J. E. Miller, Design of brushless permanent-magnet machines, Venice, Florida, USA:Motor Design Books, ISBN:9780984068708, 2010.
[24] A. Emadi, Advanced electric driveVehicles, CRC Press, ISBN:9781138072855, 2014.
[25] 許新村,“2018 車輛研測專刊-CAE 分析技術於永磁馬達性能模擬應用”,財團法人車輛研究測試中心,2018。
[26] 藍亦維,“車用電機發展趨勢與設計規格需求”,思博科技 Maxwell 應用於車用電機實務設計分析研討會,2019。
[27] 丁家敏,“PME 525300 交流電機設計課程講義”,國立清華大學機械系,2018。
[28] 謝文嘉,“應用於電動車之內藏型永磁同步馬達之設計與分析”,逢甲大學電機工程學系學位論文,2016。
[29] R.Yang, “ElectrifiedVehicle traction machine design with manufacturing considerations”, McMaster University PhD Thesis, 2017.
[30] 王世杰,“精密馬達設計課程講義”,國立交通大學,2020。
[31] 黃昌圳,“專題研究計畫-高效率永磁同步電機之最佳化設計與實現”,行政院國家科學委員會,2010。
[32] J. F. Gieras, Permanent magnet motor technology: design and applications, CRC press, ISBN:9781420064407, 2002.
[33] 中國鋼鐵,“電磁鋼捲電磁特性曲線”,中國鋼鐵股份有限公司,2016。
[34] 松本茂雄,真田雅之,省エネモータの原理と設計法 ,科学情報出版, ISBN:9784904774090,2013。
[35] 中國國家標準化管理委員會,「永磁交流伺服電動機:通用技術條件」,中華人民共和國國家質量監督檢驗檢疫總局,ISBN:155066133212,2014。
[36] 黃宣綸,“永磁式直接驅動電機之分析”,國立清華大學動力機械系碩士論文, 2017。
[37] A. Rezzoug and M. E. H. Zaïm, Non-conventional electrical machines, Wiley Online Library, ISBN:9781118604373, 2012.
[38] 吳智正, “應用於主軸之高速銅轉子感應電動機研究”,國立清華大學動力機械系碩士論文,2019。
[39] F. Chui, “Skin effect & proximity effect”, Powerpoint presentation by Bull Will, 2014.
[40] G. R. Slemon and X. Liu, “Core losses in permanent magnet motors”, IEEE Transactions on Magnetics, Vol. 26, no. 5, pp. 1653-1655, 1990.
[41] K. Yamazaki and H. Ishigami, “Rotor-shape optimization of interior-permanent-magnet motors to reduce harmonic iron losses”, IEEE Transactions on Industrial Electronics, Vol. 1, no. 57, pp. 61-69, 2010.
[42] Z. K. Vlatka, W.L. Soong, and N. Ertugrul, “Iron loss reduction in an interior PM automotive alternator”, IEEE Transactions on Industry Applications, no. 42. 6, pp. 1478-1486, 2006.
[43] 劉昌煥,「交流電機控制:向量控制與直接轉矩控制原理」,臺灣東華, ISBN:9789574833993,,2003。
[44] K. H. Nam, AC motor control and electricVehicle applications, CRC press, ISBN:9780367732868, 2017.
[45] ARNOLD, “Sintered Neodymium-Iron-Boron Magnets”, Arnold Magnetic Technologies Corp, Rev. 151021a, 2015
[46] NIPPON STEEL,“電磁鋼板薄板”,日本製鉄株式会社,2019。
[47] Z. Zhang, C. Xia, Y. Yan, Q. Geng, T. Shi, “A hybrid analytical model for open-circuit field calculation of multilayer interior permanent magnet machines”, Journal of Magnetism and Magnetic Materials, 435, p.136-145, 2017.
[48] T. Burress, “ FY 2016 Annual Progress Report for Electric Drive Technologies Program”, Oak Ridge National Laboratory, 2016.
[49] Y. Sato, S. Ishikawa, T. Okubo, M. Abe, K. Tamai, “Development of high response motor and inverter system for the Nissan LEAF electricVehicle”, SAE Technical Paper, No. 2011-01-0350, 2011.
[50] Cogent, “Electrical Steel Non Oriented Fully Processed”, Cogent Power Ltd, 2016.
[51] Eclipse Magnetics , “NdFeB Magnets Neodymium Iron Boron Magnets Datasheet”, Eclipse Magnetics Ltd UK, 2015.
[52] 崴昊科技,“SmartDO Training Course Basics of SmartDO Operation”,FEA-Opt Technology Co. Ltd.,2020。
[53] S. Y. Chen, “Gradient-based structural and CFD global shape optimization with SmartDO and the response smoothing technology”, 7th World Congress of Structural and Multidisciplinary Optimization (WCSMO7), COEX Seoul, Korea, pp.1-2, 2007.