簡易檢索 / 詳目顯示

研究生: 張有鄰
Chang, Yu-Lin
論文名稱: Waldschmidt常數的Demailly猜想:一個改良的充分條件與Nagata/Iarrobino猜想下的證明
Demailly Conjecture on Waldschmidt constant in P^n: an improved sufficient condition and a proof assuming Nagata/Iarrobino Conjecture
指導教授: 卓士堯
Jow, Shin-Yao
口試委員: 陳俊成
Chen, Jiun-Cheng
吳思曄
Wu, Siye
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 18
中文關鍵詞: 代數幾何
外文關鍵詞: algebraic geometry
相關次數: 點閱:63下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這論文中我們討論了一些關於 Waldschmidt constant 的結果。其中一個主要的結果是Nagata/Iarrobino猜想與Demailly猜想之間的關係:在 Pn上隨意選取的點夠大時,在前者的猜想假設下後者成立。另外我們也把參考文獻[14]裡的主要定理做一個改良。


    In this note, we discuss some results about Waldschmidt constant. One of the main results presents a relation between Nagata/Iarrobino Conjecture and Demailly Conjecture: the former implies the latter, for large enough number of general points in Pn, n ≥ 2. In addition, we also present an improvement of the main theorem in [14].

    1 Introduction---------------------------------------------------1 2 Preliminary----------------------------------------------------2 3 Some containment problems between symbolic and ordinary powers-6 4 A Lower bound of Waldschmidt constant related to the number of general points-------------------------------------------------8 5 Proof of Theorem 1.2------------------------------------------12 6 Proof of Theorem 1.3------------------------------------------16 Reference-------------------------------------------------------18

    1] C. Bocci, B. Harbourne, Comparing powers and symbolic powers of ideals, J. Algebraic Geom. 19. (2010), 399-417.
    [2] G. V. Chudnovsky, Singular points on complex hypersurfaces and multidimensional
    Schwarz Lemma, Seminaire de Theorie des Nombres, Paris 1979–80, Seminaire Delange-Pisot-Poitou, Progress in Math vol. 12, M-J Bertin, editor, Birkhauser, Boston-Basel-Stutgart 1981.
    [3] J.-P. Demailly, Formules de Jensen en plusieurs variables et applications arithmétiques, Bull. Soc. Math. France 110. (1982), 75–102.
    [4] M. Dumnicki, T. Szemberg, H. Tutaj-Gasinska, Counterexamples to the I(3) ⊂ I2 containment, J. Algebra 393 . (2013) 24–29.
    [5] M. Dumnicki, H. Tutaj-Gasi´nska, A containment result in Pn and the Chudnovsky Conjecture, Proc. Amer. Math. Soc. 145. (2017), 3689–3694.
    [6] H. Esnault, E. Viehweg, Sur une minoration du degré d’hypersurfaces s’annulant en certains points, Math. Ann. 263 . (1983), no. 1, 75–86.
    [7] L. Evain, On the postulation of sd fat points in Pd, J. Algebra 285 . (2005) 516–530.
    [8] L. Fouli, P. Mantero, Y. Xie, Chudnovsky’s conjecture for very general points in P Nk, J. Algebra 498. (2018) 211–227.
    [9] B. Harbourne, C. Huneke, Are symbolic powers highly evolved?, J. Ramanujan Math. Soc. (2011), arXiv:1103.5809.
    [10] A. Hirschowitz, La méthode d’Horace pour l’interpolation à plusieurs variables, Manuscripta Math. 50. (1985) , 337–388.
    [11] M. Hochster, C. Huneke, Comparison of symbolic and ordinary powers of ideals, Invent. Math. 147. (2002), no. 2, 349-369.(arXiv:math/0211174)
    [12] M. Hochster, C. Huneke, Fine behavior of symbolic powers of ideals, Illinois J. Math. 51. (2007) 171–183.
    [13] T. Iarrobino, Inverse system of a symbolic power III: thin algebras and fat points, Compositio Math. 108. (1997) 319–356.
    [14] G. Malara, T. Szemberg, J. Szpond, On a conjecture of Demailly and new bounds on Waldschmidt constants in PN , J. Number Theory 189 (2018) 211-219.
    [15] J.-C. Moreau, Lemmes de Schwarz en plusieurs variables et applications arithmétiques, Séminaire Pierre Lelong-Henri Skoda (Analyse). Années 1978/79 (French), in: Lecture Notes in Math., vol.822, Springer, Berlin–New York. (1980) 174–190.
    [16] M. Nagata, On the 14-th problem of Hilbert, Amer. J. Math. 81. (1959) 766-772.
    [17] H. Skoda, Estimations L2 pour l’opérateur ˜∂ et applications arithmétiques, Séminaire P. Lelong (Analyse), 1975/76, Lecture Notes Math. 578, Springer-Verlag. (1977) 314-323.
    [18] M. Waldschmidt, Propriétés arithmétiques de fonctions de plusieurs variables II,
    Séminaire P. Lelong (Analyse), 1975–76, Lecture Notes Math. 578, Springer-Verlag. (1977) 108–135.
    [19] M. Waldschmidt, Nombres transcendants et groupes algébriques, Astérisque 69/70, Socéte Mathématiqué de France. (1979).

    QR CODE