研究生: |
廖建榮 Chien-Jung Liao |
---|---|
論文名稱: |
單頻Nd:GdVO4雷射研究 Studies of single mode Nd:GdVO4 laser |
指導教授: |
施宙聰
Jow-Tsong Shy |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 37 |
中文關鍵詞: | 單頻 、Nd:GdVO4 、雷射 |
外文關鍵詞: | single mode, Nd:GdVO4, laser |
相關次數: | 點閱:43 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一般單模、可調的連續波固態雷射大多都是採用,在共振腔內加入標準具、稜鏡或者是光柵等光波長選擇元件。然而我們所採用一種新式的光學元件-體積式布拉格光柵 (Volume Bragg grating, VBG) 加上短線型共振腔的結構來達到單模可調的連續波固態雷射。VBG它是利用全像原理,將其記錄於光熱折變 (Photo-thermal refractive, PTR) 玻璃中,由Oleg M. Efimov等人所發展出來的一個新式光學元件。PTR玻璃有許多優點,例如:大的穿透頻寬、高的損害閥值、好的熱穩定性和可控制折射率變化,所以PTR VBG可以當成一個理想窄頻寬雷射鏡子。此外,PTR VBG會隨溫度上升可使它的繞射中心波長增加來調整雷射輸出的波長。我們首先達成Nd:GdVO4雷射在1071 nm附近的雷射輸出,當VBG的溫度從30 ºC改變至184 ºC,波長可從1070.26 nm調至1071.53 nm,共調了1.27 nm。另外我們可以架構一V型共振腔Nd:GdVO4雷射,並且利用VBG當作一面反射及輸出耦合的鏡子,並且改變角度來降低它的繞射波長,入射至VBG玻璃的表面與法線夾角從14º改變至21º,波長可從1062 nm調至 1066.3 nm,共調了4.3 nm。
In general, cw solid state laser of single mode and tuning wavelength laser usually used etalon, prisms or grating. However, we used new optical element - Volume Bragg grating (VBG) to integrate short linear cavity to achieve single mode tuning cw solid state laser. VBG was make holography use of ultraviolet (UV) and record to Photo-thermal refractive (PTR) glass. It is the new optical element component coming out invented by Oleg M. Efimov et. The PTR VBG had many advantages such as large transparent range, high damage threshold, good thermal stability, and has controllable refraction index change. Therefore, a PTR VBG can work for an ideal narrow band laser mirror. Tuning the temperature or changing incident angle of the Bragg grating can shift the central lasing peak to tuning laser emission central wavelength. The 1070 nm lasing action of Nd:GdVO4 is demonstrated for the first time to our knowledge. The PTR VBG temperature range from 30 °C to 156 °C, and lasing wavelength can from 1070.26 nm to 1071.53 nm. Total tuning range is 1.27 nm. In addition, we have constructed a V-cavity Nd:GdVO4 laser using the VBG as the folding mirror and output coupler. And changing deflected angle from 14º to 21º and tunable wavelength from 1062 nm to 1066.3 nm, total tuning ranging is 4.3 nm.
[1] Le Grand G. Van Uitert, “Process for growing and apparatus for utilizing paramagnetic crystals,” U. S. patent 3,003,112 (Oct. 3, 1961).
[2] E. Snitzer, “Optical maser action of Nd3+ in a barium crown glass,” Phys. Rev. Lett. 7, 444 (1961).
[3] J. E. Geusic, H. M. Marcos, and L. G. Van Uitert, “Laser oscillations in Nd-doped yttrium aluminum, yttrium gallium and gadolinium garnets,” Appl. Phys. Lett. 4, 182 (1964).
[4] J. R. O’Connor, “Unusual crystal-field energy levels and efficient laser properties of Nd:YVO4,” Appl. Phys. Lett. 9, 407 (1966).
[5] A. I. Zagumennyi, V. G. Ostroumov, I. A. Shcherbarkov, T. Jensen, J. P. Meyn, and G. Huber, “The Nd:GdVO4 crystal: a new material for diode-pumped lasers,” Sov. J. Quantum Electron. 22, 1071 (1992).
[6] T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, and I. A. Shcherbarkov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd: GdVO4,” Appl. Phys. B 58, 373 (1994).
[7] T. Ogawa, Y. Urata, S. Wada, K. Onodera, H. Machida, H. Sagae, M. Higuchi, and K. Kodaira, “Efficient laser performance of Nd:GdVO4 crystals grown by the floating zone method,” Opt. Lett. 28, 2333 (2003).
[8] V. Lupei, N. Pavel, Y. Sato, and T. Taira, “Highly efficient 1063-nm continuous-wave laser emission in Nd:GdVO4,” Opt. Lett. 28, 2366 (2003).
[9] L. B. Glebov and V. I. Smirnov, “Interaction of photo-thermo-refractive glass with nanosecond pulses at 532 nm,” presented at SPIE Laser-Induced Damage in Optical Materials, Bellingham, WA, (2004).
[10] T. Chung, A. Rapaport, V. Smirnov, L. B. Glebov, M. C. Richardson, and M. Bass, “Solid state laser spectral narrowing using a volumetric PTR Bragg grating cavity mirror,” Opt. Lett. 31, 229 (2006).
[11] O. M. Efimov, L. B. Glebov, L. N. Glebova, and V. I. smirnov, “Process for production of high efficiency volume diffractive elements in photo-thermo-refractive glass,” U. S. patent 6,586,141 B1 (July 1, 2003)
[12] O. M. Efimov, L. B. Glebov, and V. I. smirnov, “High efficiency volume diffractive elements in photo-thermo-refractive glass,” U. S. patent 6,673,497 B2 (January 6, 2004).
[13] T. Y. Chung, A. Rapaport, V. Smirnov, H. Michaël, L. B. Glebov, M. C. Richardson, and M. Bass, “Unexpected Properties of a Laser Resonator with Volumetric Bragg Grating End Mirrors,” paper CFB5, CLEO/QELS, Long beach, CA, USA., (May, 2006).
[14] B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Single-longitudinal-mode Nd-laser with a Bragg-grating Fabry-Pérot cavity,” Opt. Express 14, 9284 (2006).
[15] D. C. Brown, High-peak-power Nd:glass laser system, Springer-Verlag Berlin Heidelberg (1981).
[16] A. I. Zagumennyi, Y. D. Zavartsev, P. A. Studenikin, I. A. Shcherbakov, A. F. Umyskov, P. A. Popov, and V. B. Ufimtsev, “GdVO4 crystals with Nd3+, Tm3+,Ho3+, and Er3+ ions for diode-pumped microchip laser,” SPIE 2698, 182.
[17] I. A. Shcherbakov, and A. I. Zagumennyi, “Characterization of Nd:GdVO4 crystals for high-efficiency diode-pumped lasers,” Proceedings of SPIE 2498, 241 (1995).
[18] H. Zhang, et al., “Characterization of the laser crystal Nd:GdVO4,” J. Opt. Soc. Am. B. 19, 18 (2002).
[19] Y. Sato, and T. Taira, “Comparative study on the spectroscopic properties of Nd:GdVO4 and Nd:YVO4 with hybrid process,” IEEE J. Sel. Top. Quantum Electron. 11, 613 (2005).
[20] W. Koechner, Solid-state laser engineering, 6th ed. (Springer, 2006)
[21] B. Hitz, J. J. Ewing, and J. Hecht, Introduction to laser technology, 3th ed. (IEEE, 2000).
[22] K. J. Kuhn, Laser engineering, Simon & Schuster (1998).
[23] Y. F. Chen, M. L. Ku, and K. W. Su, “High-power efficient tunable Nd:GdVO4 laser at 1083 nm,” Opt. Lett. 30, 2107 (2005).
[24] L. B. Glebov, “Photochromic and photo-thermo-refractive glasses,” Encyclopedia of smart materials, 770.
[25] J. A. Dobrowolski, and D. Lowe, “Optical thin film synthesis program based on the use of fourier transforms,” Appl. Opt. 17, 3039 (1978).
[26] J. Kong, D. Y. Tang, S. P. Ng, L. M. Zhao, L. J. Qin, and X. L. Meng, “High-power diode-end-pumped CW Nd:GdVO4 laser,” Optics & Laser Technology 37, 51 (2004).