研究生: |
王博誠 Wang, Po Chang |
---|---|
論文名稱: |
Etalon耦合輸出之單、雙色Nd:YVO4 / Nd:GdVO4雷射 Singe- and two-color laser generation from etalon-out-coupled Nd:YVO4 / Nd:GdVO4 laser |
指導教授: |
黃衍介
Huang, Yen Chieh |
口試委員: |
潘犀靈
Pan, Ci Ling 陳彥宏 Chen, Yen Hung |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 40 |
中文關鍵詞: | 雷射 |
外文關鍵詞: | two-color laser |
相關次數: | 點閱:65 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們利用將etalon置放於腔內或者於輸出耦合產生可調單色及雙色雷射。在厚度500 μm etalon置放於腔內中以及使用a-cut Nd:YVO4增益介質,我們產生雙色雷射波長為1064.21 nm及1064.69 nm,兩峰間距為127 GHz。在厚度760 μm etalon置放於腔內中以及使用a-cut Nd:YVO4增益介質,我們產生雙色雷射波長為1064.27 nm及1064.58 nm,兩峰間距為82 GHz,在14.8 W的幫浦雷射功率下,可以產生約一百毫瓦(mW)的輸出功率。透過改變高finesse etalon的角度達到高損耗的穿透峰可以掃描雷射的增益頻譜。因此我們使用c-cut Nd:YVO4增益介質加上114μm的etalon可以產生單色雷射在1066.7 、1065.0 和 1084.0 nm 以及雙色雷射在1065.3和1067.0 nm 而兩峰值間距448 GHz。藉由Nd:GdVO4 增益介質加上150 μm 的etalon可以產生單色雷射在1063.7 和1066.0 nm 以及雙色雷色在1063.8 和1066.0 nm 兩峰值間距581 GHz。
This thesis reports tunable single- and two-color lasers with an intra-cavity etalon or an etalon output coupler. For the former, the two-color laser was generated at 1064.21 and 1064.69 nm (or 1064.27 and 1064.58 nm), with a 127 GHz (or 82 GHz) peak separation from an a-cut Nd:YVO4 with a 500 µm-thick (or 760 µm-thick) intra-cavity etalon. Hundreds of mW power from the 2-color laser was obtained with a pump of 14.8 W. By tilting the high-finesse etalon coupler, its high-loss transmission peak can be shifted to scan across the gain spectrum of the laser. With a 114 µm-thick etalon output coupler, a single-color laser was produced at 1066.7, 1065.0, or 1084.0 nm, whereas a two-color laser was produced at 1065.3 and 1067.0 nm with a 448 GHz peak separation from a c-cut Nd:YVO4 laser system. Moreover, a single-color laser was generated at 1063.7 or 1066.0 nm, whereas a two-color laser was generated at 1063.8 and 1066.0 nm with a 581 GHz peak separation from an Nd:GdVO4 laser system with a 150 µm-thick etalon output coupler.
[1] Bradeley Ferguson, Xi-Cheng Zhang, nature materials, Materials for terahertz science and technology, VOL 1, (2002)
[2] Kodo Kawase, Optics & Photonics News, Terahertz Imaging, (2004)
[3] Yuzo Sasaki, Yuri Avetisyan, Hiroyuki Yokoyama, Hiromasa Ito, OPTICS LETTERS, Surface-emitted terahertz-wave differencefrequency generation in two-dimensional periodically poled lithium niobate, Vol. 30, No. 21, (2005)
[4] Yuzo Sasakia, Avetisyan Yuri, Kodo Kawase, Hiromasa Ito, APPLIED PHYSICS LETTERS, Terahertz-wave surface-emitted difference frequency generation
in slant-stripe-type periodically poled LiNbO3 crystal, Vol. 81, No. 18, (2002)
[5] A J SINGH, S K SHARMA, P K MUKHOPADHYAY and S M OAK, Dual wavelength operation in diode-end-pumped hybrid vanadate laser, PRAMANA journal of physics, Vol. 75, No. 5, (2010).
[6] Claus-Stefan Friedrich, Carsten Brenner, Stefan Hoffmann, Andreas Schmitz, Iv´an C´amara Mayorga, Andreas Klehr, G¨otz Erbert, and Martin R. Hofmann, New Two-Color Laser Concepts for THz Generation, IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 14, NO. 2, (2008).
[7] Y. Y. Lin, S. Y. Chen, A. C. Chiang, R. Y. Tu, and Y. C. Huang, Single-longitudinal-mode, tunable dual-wavelength, CW Nd:YVO4 laser, OPTICS EXPRESS, Vol. 14, No. 12 , (2006).
[8] Bo Wu, Peipei Jiang, Dingzhong Yang, Tao Chen, Jian Kong, and Yonghang Shen, Compact dual-wavelength Nd:GdVO4 laser working at 1063 and 1065 nm, OPTICS EXPRESS, Vol. 17, No. 8, (2009).
[9] K. Spariosu, W. Chen, R. Stultz, M. Birnbaum and A. V. Shestakov, Dual Q switching and laser action at 1.06 and 1.44 um in a Nd3+:YAG-Cr4+:YAG oscillator at 300 K, OPTICS LETTERS, Vol. 18, No. 10, (1993).
[10] Zhengqian Luo, Min Zhou, Jian Weng, Guoming Huang, Huiying Xu, Chenchun Ye, and Zhiping Cai, Graphene-based passively Q-switched dual-wavelength
erbium-doped fiber laser, OPTICS LETTERS, Vol. 35, No. 21, (2010)
[11] Fuqiang Jia, Hao Chen, Pei Liu, Yizhong Huang, and Zhengqian Luo, Nanosecond-Pulsed, Dual-Wavelength Passively Q-Switched c-Cut Nd:YVO4 Laser Using a Few-Layer Bi2Se3Saturable Absorber, IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 21, NO. 1, (2015).
[12] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons,
2007) 368.
[13] M.E. Innocenzi, H.T. Yura, C.L. Fincher, and R.A. Fields, Thermal modeling of continuous-wave end-pump solid-state lasers, Appl. Phys. Lett. 56(19), (1990).
[14] Paolo Laporta, Member, IEEE, and Marcello Brussard , Design Criteria for Mode Size Optimization in Diode- Pumped Solid-state Lasers, IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 27. NO. 10. (1991).
[15] Gholamreza Shayeganrad , Leila Mashhadi, Dual-wavelength CW diode-end-pumped a-cut Nd:YVO4 laser at 1064.5 and 1085.5 nm ,Appl. Phys. B 111:189–194 (2013).
[16] Gholamreza Shayeganrad, Actively Q-switchedNd:YVO4 dual-wavelength stimulated Ramanlaser at 1178.9nmand1199.9nm, Optics Communications, 292131–134 (2013).
[17] Dhiraj K. Sardar , Raylon M. Yow, Stark components of , and manifold energy levels and effects of temperature on the laser transition of Nd3+ in YVO4, Optical Materials, 14, 5-11, (2000)
[18] Gholamreza Shayeganrad, Actively Q-switchedNd:YVO4 dual-wavelength stimulated Ramanlaser at 1178.9nmand1199.9nm, Optics Communications, 292131–134 (2013)
[19] Weitao Wang, Zhenhua Cong, Xiaohan Chen, Xingyu Zhang, Zengguang Qin, Guanqi Tang, Ning Li, Cong Wang, and Qingming Lu, Terahertz parametric oscillator based on KTiOPO4 crystal, OPTICS LETTERS, Vol. 39, No. 13, (2014)